Skip to main content

Co-authorship Prediction Based on Temporal Graph Attention

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12858))

  • 1841 Accesses

Abstract

The social network analysis has received significant interests and concerns of researchers recently, and co-authorship prediction is an important link prediction problem. Traditional models inefficiently use multi-relational information to enhance topological features. In this paper, we focus on the co-authorship prediction in the co-authorship knowledge graph (KGs) to show that multi-relation graphs can enhance feature expression ability and improve prediction performance. Currently, the main models for link prediction in KGs are based on KG embedding learning, such as several models using convolutional neural networks and graph neural networks. These models capture rich and expressive embeddings of entities and relations, and obtain good results. However, the co-authorship KGs have much temporal information in reality, which cannot be integrated by these models since they are aimed at static KGs. Therefore, we propose a temporal graph attention network to model the temporal interactions between the neighbors and encapsulate the spatiotemporal context information of the entities. In addition, we also capture the semantic information and multi-hop neighborhood information of the entities to enrich the expression ability of the embeddings. Finally, our experimental evaluations on all dataset verify the effectiveness of our approach based on temporal graph attention mechanism, which outperforms the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://cdblp.ruc.edu.cn/.

References

  1. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: ICML, pp. 21–29 (2019)

    Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS, pp. 1–9 (2013)

    Google Scholar 

  3. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI, pp. 301–306 (2011)

    Google Scholar 

  4. Chuan, P.M., Ali, M., Khang, T.D., Dey, N., et al.: Link prediction in co-authorship networks based on hybrid content similarity metric. Appl. Intell. 48(8), 2470–2486 (2018)

    Article  Google Scholar 

  5. Dai Quoc Nguyen, T.D.N., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL-HLT, pp. 327–333 (2018)

    Google Scholar 

  6. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)

    Google Scholar 

  7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  9. Embar, V.R., Bhattacharya, I., Pandit, V., Vaculin, R.: Online topic-based social influence analysis for the Wimbledon championships. In: SIGKDD (2015)

    Google Scholar 

  10. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to the linked data web. In: ISWC, pp. 50–65 (2014)

    Google Scholar 

  11. Garcia-Duran, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)

    Google Scholar 

  12. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18, 602–610 (2005)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question answering. In: WSDM, pp. 105–113 (2019)

    Google Scholar 

  16. Jain, N.: Domain-specific knowledge graph construction for semantic analysis. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12124, pp. 250–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62327-2_40

    Chapter  Google Scholar 

  17. Jiang, T., Liu, T., Ge, T., Sha, L., Li, S., Chang, B., Sui, Z.: Encoding temporal information for time-aware link prediction. In: EMNLP, pp. 2350–2354 (2016)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW, pp. 1771–1776 (2018)

    Google Scholar 

  20. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP, pp. 705–714 (2015)

    Google Scholar 

  21. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilingual Wikipedias. In: CIDR (2014)

    Google Scholar 

  22. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: ACL, pp. 4710–4723 (2019)

    Google Scholar 

  23. Qi, Y., Chao, L., Yanhua, L., Hongfang, S., Peifeng, H.: Predicting co-author relationship in medical co-authorship networks. PLOS ONE 9(7), e101214 (2014)

    Article  Google Scholar 

  24. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  25. Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural networks. In: SIGIR, pp. 959–962 (2015)

    Google Scholar 

  26. Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship prediction in heterogeneous bibliographic networks. In: ASONAM (2011)

    Google Scholar 

  27. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  30. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: SIGKDD, pp. 950–958 (2019)

    Google Scholar 

  31. Wang, X., Lu, W., Ester, M., Wang, C., Chen, C.: Social recommendation with strong and weak ties. In: CIKM, pp. 5–14 (2016)

    Google Scholar 

  32. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  33. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  34. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z., Chawla, N.V.: Few-shot knowledge graph completion. In: AAAI, vol. 34, pp. 3041–3048 (2020)

    Google Scholar 

Download references

Acknowledgements

Peng Cheng’s work is partially sponsored by Shanghai Pujiang Program 19PJ1403300. Lei Chen’s work is partially supported by National Key Research and Development Program of China Grant No. 2018AAA-0101100, the Hong Kong RGC GRF Project 16207617, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project AoE/E-603/18, Theme-based project TRS T41-603/20R, China NSFC No. 61729201, Guangdong Basic and Applied Basic Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, HKUST-NAVER/LINE AI Lab, Didi-HKUST joint research lab, HKUST-Webank joint research lab grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, D., Cheng, P., Lin, X., Chen, L. (2021). Co-authorship Prediction Based on Temporal Graph Attention. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12858. Springer, Cham. https://doi.org/10.1007/978-3-030-85896-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85896-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85895-7

  • Online ISBN: 978-3-030-85896-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics