Skip to main content

Chinese Word Embedding Learning with Limited Data

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

With the increasing demands of high-quality Chinese word embeddings for natural language processing, Chinese word embedding learning has attracted wide attention in recent years. Most of the existing research focused on capturing word semantics on large-scaled datasets. However, these methods are difficult to obtain effective word embeddings with limited data used for some specific fields. Observing the rich semantic information of Chinese fine-grained structures, we develop a model to fully fuse Chinese fine-grained structures as auxiliary information for word embedding learning. The proposed model views the word context information as a combination of word, character, pronunciation, and component. Besides, it adds the semantic relationship between pronunciations and components as a constraint to exploit auxiliary information comprehensively. Based on the decomposition of shifted positive pointwise mutual information matrix, our model could effectively generate Chinese word embeddings on small-scaled data. The results of word analogy, word similarity, and name entity recognition conducted on two public datasets show the effectiveness of our proposed model for capturing Chinese word semantics with limited data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/hostnlp/PCCWE.

  2. 2.

    http://www.nlpir.org/wordpress/download/NLPIR-news-corpus.rar.

  3. 3.

    http://openkg.cn/dataset/yidu-s4k.

  4. 4.

    https://github.com/BYVoid/OpenCC.

  5. 5.

    https://github.com/fxsjy/jieba/.

  6. 6.

    http://www.zdic.net/.

  7. 7.

    http://xh.5156edu.com/page/z9907m3552j18976.html.

References

  1. Ailem, M., Salah, A., Nadif, M.: Non-negative matrix factorization meets word embedding. In: SIGIR, pp. 1081–1084 (2017)

    Google Scholar 

  2. Altszyler, E., Sigman, M., Slezak, D.F.: Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database. CoRR abs/1610.01520 (2016)

    Google Scholar 

  3. Avraham, O., Goldberg, Y.: The interplay of semantics and morphology in word embeddings. In: EACL, pp. 422–426 (2017)

    Google Scholar 

  4. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  5. Cao, S., Lu, W., Zhou, J., Li, X.: cw2vec: learning Chinese word embeddings with stroke n-gram information. In: AAAI, pp. 5053–5061 (2018)

    Google Scholar 

  6. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: IJCAI, pp. 1236–1242 (2015)

    Google Scholar 

  7. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  9. Ding, C., Li, T., Peng, W.: On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Comput. Stat. Data Anal. 52(8), 3913–3927 (2008)

    Article  MathSciNet  Google Scholar 

  10. Hofmann, T.: Probabilistic latent semantic analysis. In: UAI, pp. 289–296 (1999)

    Google Scholar 

  11. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR abs/1508.01991 (2015)

    Google Scholar 

  12. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: NIPS, pp. 2177–2185 (2014)

    Google Scholar 

  13. Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X., Chen, E.: Word embedding revisited: a new representation learning and explicit matrix factorization perspective. In: IJCAI, pp. 3650–3656 (2015)

    Google Scholar 

  14. Luong, M.T., Socher, R., Manning, C.D.: Better word representations with recursive neural networks for morphology. In: CoNLL, pp. 104–113 (2013)

    Google Scholar 

  15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshop (2013)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  17. Peng, Y., Jiang, H.: Leverage financial news to predict stock price movements using word embeddings and deep neural networks. In: NAACL-HLT, pp. 374–379 (2016)

    Google Scholar 

  18. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  19. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  20. Salah, A., Ailem, M., Nadif, M.: Word co-occurrence regularized non-negative matrix tri-factorization for text data co-clustering. In: AAAI, pp. 3992–3999 (2018)

    Google Scholar 

  21. Salle, A., Idiart, M., Villavicencio, A.: Matrix factorization using window sampling and negative sampling for improved word representations. arXiv preprint arXiv:1606.00819 (2016)

  22. Su, T.R., Lee, H.Y.: Learning Chinese word representations from glyphs of characters. arXiv preprint arXiv:1708.04755 (2017)

  23. Sun, Y., et al.: ERNIE 2.0: a continual pre-training framework for language understanding. In: AAAI, pp. 8968–8975 (2020)

    Google Scholar 

  24. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: ACL, pp. 1555–1565 (2014)

    Google Scholar 

  25. Xu, J., Liu, J., Zhang, L., Li, Z., Chen, H.: Improve Chinese word embeddings by exploiting internal structure. In: NAACL-HLT, pp. 1041–1050 (2016)

    Google Scholar 

  26. Xun, G., Li, Y., Gao, J., Zhang, A.: Collaboratively improving topic discovery and word embeddings by coordinating global and local contexts. In: SIGKDD, pp. 535–543 (2017)

    Google Scholar 

  27. Yang, Q., Xie, H., Cheng, G., Wang, F.L., Rao, Y.: Pronunciation-enhanced Chinese word embedding. Cogn. Comput. 13(3), 688–697 (2021)

    Article  Google Scholar 

  28. Yu, J., Jian, X., Xin, H., Song, Y.: Joint embeddings of Chinese words, characters, and fine-grained subcharacter components. In: EMNLP, pp. 286–291 (2017)

    Google Scholar 

  29. Zhang, Y., et al.: Learning Chinese word embeddings from stroke, structure and pinyin of characters. In: CIKM, pp. 1011–1020 (2019)

    Google Scholar 

Download references

Acknowledgment

We are grateful to the reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China (61972426) and Guangdong Basic and Applied Basic Research Foundation (2020A1515010536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghui Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Chen, Y., Lu, Y., Rao, Y., Xie, H., Li, Q. (2021). Chinese Word Embedding Learning with Limited Data. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12858. Springer, Cham. https://doi.org/10.1007/978-3-030-85896-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85896-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85895-7

  • Online ISBN: 978-3-030-85896-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics