Abstract
Visual Question Generation (VQG) aims to generate questions from images. Existing studies on this topic focus on generating questions solely based on images while neglecting the difficulty of questions. However, to engage users, an automated question generator should produce questions with a level of difficulty that are tailored to a user’s capabilities and experience. In this paper, we propose a Difficulty-controllable Generation Network (DGN) to alleviate this limitation. We borrow difficulty index from education area to define a difficulty variable for representing the difficulty of questions, and fuse it into our model to guide the difficulty-controllable question generation. Experimental results demonstrate that our proposed model not only achieves significant improvements on several automatic evaluation metrics, but also can generate difficulty-controllable questions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR, pp. 6077–6086 (2018)
Denkowski, M.J., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: WMT@ACL, pp. 376–380 (2014)
Desai, T., Moldovan, D.I.: Towards predicting difficulty of reading comprehension questions. In: FLAIRS Conference, pp. 8–13 (2019)
dos Santos, C.N., Melnyk, I., Padhi, I.: Fighting offensive language on social media with unsupervised text style transfer. In: ACL, pp. 189–194 (2018)
Du, X., Shao, J., Cardie, C.: Learning to ask: neural question generation for reading comprehension. In: ACL, pp. 1342–1352 (2017)
Egly, R., Driver, J., Rafal, R.D.: Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exper. Psychol. Gen. 123(2), 161–77 (1994)
Fan, Z., Wei, Z., Li, P., Lan, Y., Huang, X.: A question type driven framework to diversify visual question generation. In: Lang, J. (ed.) IJCAI, pp. 4048–4054 (2018)
Gao, Y., Bing, L., Chen, W., Lyu, M.R., King, I.: Difficulty controllable generation of reading comprehension questions. In: IJCAI, pp. 4968–4974 (2019)
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: CVPR, pp. 6325–6334 (2017)
Ha, L.A., Yaneva, V., Baldwin, P., Mee, J.: Predicting the difficulty of multiple choice questions in a high-stakes medical exam. In: BEA@ACL, pp. 11–20 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Heilman, M., Smith, N.A.: Good question! statistical ranking for question generation. In: HLT-NAACL, pp. 609–617 (2010)
Jain, U., Lazebnik, S., Schwing, A.G.: Two can play this game: visual dialog with discriminative question generation and answering. In: CVPR, pp. 5754–5763 (2018)
Jain, U., Zhang, Z., Schwing, A.G.: Creativity: generating diverse questions using variational autoencoders. In: CVPR, pp. 5415–5424 (2017)
Kim, J., Jun, J., Zhang, B.: Bilinear attention networks. In: NIPS, pp. 1571–1581 (2018)
Kim, Y., Lee, H., Shin, J., Jung, K.: Improving neural question generation using answer separation. AAAI 33, 6602–6609 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krishna, R., Bernstein, M., Fei-Fei, L.: Information maximizing visual question generation. In: CVPR, pp. 2008–2018 (2019)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017)
Kumar, V., Hua, Y., Ramakrishnan, G., Qi, G., Gao, L., Li, Y.: Difficulty-controllable multi-hop question generation from knowledge graphs. ISWC 11778, 382–398 (2019)
Kunichika, H., Katayama, T., Hirashima, T., Takeuchi, A.: Automated question generation methods for intelligent English learning systems and its evaluation. In: Proceedings of ICCE (2004)
Labutov, I., Basu, S., Vanderwende, L.: Deep questions without deep understanding. In: ACL, pp. 889–898 (2015)
Li, J., Gao, Y., Bing, L., King, I., Lyu, M.R.: Improving question generation with to the point context. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) EMNLP-IJCNLP, pp. 3214–3224 (2019)
Li, X., Zhou, Z., Chen, L., Gao, L.: Residual attention-based LSTM for video captioning. World Wide Web 22(2), 621–636 (2019)
Li, Y., et al.: Visual question generation as dual task of visual question answering. In: CVPR, pp. 6116–6124 (2018)
Liao, Y., Bing, L., Li, P., Shi, S., Lam, W., Zhang, T.: Quase: sequence editing under quantifiable guidance. In: EMNLP, pp. 3855–3864 (2018)
Lin, C.: ROUGE: a package for automatic evaluation of summaries, pp. 74–81 (2004)
Lindberg, D., Popowich, F., Nesbit, J.C., Winne, P.H.: Generating natural language questions to support learning on-line. In: ENLG, pp. 105–114 (2013)
Ma, X., Zhu, Q., Zhou, Y., Li, X.: Improving question generation with sentence-level semantic matching and answer position inferring. In: AAAI, pp. 8464–8471 (2020)
Mostafazadeh, N., Misra, I., Devlin, J., Mitchell, M., He, X., Vanderwende, L.: Generating natural questions about an image. In: ACL (2016)
Nema, P., Mohankumar, A.K., Khapra, M.M., Srinivasan, B.V., Ravindran, B.: Let’s ask again: refine network for automatic question generation. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) EMNLP-IJCNLP, pp. 3312–3321 (2019)
Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)
Ren, M., Kiros, R., Zemel, R.: Exploring models and data for image question answering. In: NIPS, pp. 2953–2961 (2015)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
Scholl, B.J.: Objects and attention: the state of the art. Cognition 80(1–2), 1–46 (2001)
Scialom, T., Piwowarski, B., Staiano, J.: Self-attention architectures for answer-agnostic neural question generation. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) ACL, pp. 6027–6032 (2019)
Sharma, S., El Asri, L., Schulz, H., Zumer, J.: Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation. arXiv:1706.09799 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Teney, D., Anderson, P., He, X., van den Hengel, A.: Tips and tricks for visual question answering: learnings from the 2017 challenge. In: CVPR 2018, pp. 4223–4232 (2017)
Teney, D., Liu, L., van den Hengel, A.: Graph-structured representations for visual question answering. In: CVPR, pp. 3233–3241 (2017)
Tian, H., Tao, Y., Pouyanfar, S., Chen, S.-C., Shyu, M.-L.: Multimodal deep representation learning for video classification. World Wide Web 22(3), 1325–1341 (2019)
Tuan, L.A., Shah, D.J., Barzilay, R.: Capturing greater context for question generation. In: AAAI, pp. 9065–9072 (2020)
Wajeeha, D., et al.: Difficulty index, discrimination index and distractor efficiency in multiple choice questions. Ann. PIMS 4 (2018). ISSN:1815–2287
Xu, X., He, L., Lu, H., Gao, L., Ji, Y.: Deep adversarial metric learning for cross-modal retrieval. World Wide Web 22(2), 657–672 (2019)
Zhang, S., Qu, L., You, S., Yang, Z., Zhang, J.: Automatic generation of grounded visual questions. In: Sierra, C. (ed.) IJCAI, pp. 4235–4243 (2017)
Zhao, Y., Ni, X., Ding, Y., Ke, Q.: Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) EMNLP, pp. 3901–3910 (2018)
Zhou, Q., Yang, N., Wei, F., Tan, C., Bao, H., Zhou, M.: Neural question generation from text: a preliminary study. NLPCC 10619, 662–671 (2017)
Zhou, W., Zhang, M., Wu, Y.: Question-type driven question generation. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) EMNLP-IJCNLP, pp. 6031–6036 (2019)
Acknowledgements
This work was supported by National Natural Science Foundation of China (No. 62076100), National Key Research and Development Program of China (Standard knowledge graph for epidemic prevention and production recovering intelligent service platform and its applications), the Fundamental Research Funds for the Central Universities, SCUT (No. D2201300, D2210010), the Science and Technology Programs of Guangzhou (201902010046), the Science and Technology Planning Project of Guangdong Province (No. 2020B0101100002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, F., Xie, J., Cai, Y., Wang, T., Li, Q. (2021). Difficulty-Controllable Visual Question Generation. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12858. Springer, Cham. https://doi.org/10.1007/978-3-030-85896-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-85896-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85895-7
Online ISBN: 978-3-030-85896-4
eBook Packages: Computer ScienceComputer Science (R0)