Skip to main content

Unsafe Driving Behavior Prediction for Electric Vehicles

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

There is an increasing availability of electric vehicles in recent years. With the revolutionary motors and electric modules within the electric vehicles, the instant reactions bring up not only improved driving experience but also the unexpected unsafe driving accidents. Unsafe driving behavior prediction is a challenging tasks, due to the complex spatial and temporal scenarios. However, the rich sensor data collected in the electric vehicles shed light on the possible driving behavior profiling.

In this paper, based on a recent electric vehicle dataset, we analyze and categorize the unsafe driving behaviors into several classes. We then design a deep learning based multi-feature fusion approach for the unsafe driving behavior prediction framework. The proposed approach is able to distinguish the unsafe behaviors from normal ones. Improved performance is also demonstrated in the different feature analysis of unsafe behaviors.

J. Yao—This work was supported by NSFC grant 61972151.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of KDD, pp. 785–794 (2016)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Das, H., Rahman, M., Li, S., Tan, C.: Electric vehicles standards, charging infrastructure, and impact on grid integration: a technological review. Renew. Sustain. Energy Rev. 120, 109618 (2020)

    Article  Google Scholar 

  5. Fang, H., Shrestha, A., Qiu, Q.: Multivariate time series classification using spiking neural networks. In: Proceedings of IJCNN (2020)

    Google Scholar 

  6. Geng, Y., Du, J., Liang, M.: Abnormal event detection in tourism video based on salient spatio-temporal features and sparse combination learning. World Wide Web 22(2), 689–715 (2019). https://doi.org/10.1007/s11280-018-0603-0

    Article  Google Scholar 

  7. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237–245 (2019)

    Article  Google Scholar 

  8. Karlsson, I., Papapetrou, P., Boström, H.: Generalized random shapelet forests. Data Min. Knowl. Disc. 30(5), 1053–1085 (2016)

    Article  MathSciNet  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  10. Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajectories. In: Proceedings of UbiComp, pp. 243–260 (2006)

    Google Scholar 

  11. Li, Z., Zhang, K., Chen, B., Dong, Y., Zhang, L.: Driver identification in intelligent vehicle systems using machine learning algorithms. IET Intel. Transport Syst. 13(1), 40–47 (2018)

    Article  Google Scholar 

  12. Liu, J., Priyantha, B., Hart, T., Ramos, H.S., Loureiro, A.A.F., Wang, Q.: Energy efficient GPS sensing with cloud offloading. In: Proceedings of SenSys, pp. 85–98 (2012)

    Google Scholar 

  13. Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, : V.: uWave: accelerometer-based personalized gesture recognition and its applications. In: Proceedings of IEEE Pervasive and Mobile Computing, pp. 1–9 (2009)

    Google Scholar 

  14. Nawaz, S., Mascolo, C.: Mining users’ significant driving routes with low-power sensors. In: Proceedings of SenSys, pp. 236–250 (2014)

    Google Scholar 

  15. NHTSA: The visual detection of DWI motorists (2011). http://www.shippd.org/Alcohol/dwibooklet.pdf

  16. Ouyang, Z., Niu, J., Guizani, M.: Improved vehicle steering pattern recognition by using selected sensor data. IEEE Trans. Mob. Comput. 17(6), 1383–1396 (2017)

    Article  Google Scholar 

  17. Peng, Z., Gao, S., Li, Z., Xiao, B., Qian, Y.: Vehicle safety improvement through deep learning and mobile sensing. IEEE Network 32(4), 28–33 (2018)

    Article  Google Scholar 

  18. Schafer, P., Leser, U.: Multivariate time series classification with WEASEL+ muse (2017)

    Google Scholar 

  19. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Proceedings of InterSpeech (2012)

    Google Scholar 

  20. Ulm, G., Smith, S., Nilsson, A., Gustavsson, E., Jirstrand, M.: OODIDA: on-board/off-board distributed real-time data analytics for connected vehicles. Data Sci. Eng. 6(1), 102–117 (2021)

    Article  Google Scholar 

  21. Wang, Y., Yang, J., Liu, H., Chen, Y., Gruteser, M., Martin, R.P.: Sensing vehicle dynamics for determining driver phone use. In: Proceedings of MobiSys, pp. 41–54 (2013)

    Google Scholar 

  22. Yeh, Y.C., Hsu, C.Y.: Application of auto-encoder for time series classification with class imbalance. In: EasyChair Preprint (2019)

    Google Scholar 

  23. Yu, J., Chen, Z., Zhu, Y., Chen, Y., Kong, L., Li, M.: Fine-grained abnormal driving behaviors detection and identification with smartphones. IEEE Trans. Mob. Comput. 16(8), 2198–2212 (2016)

    Article  Google Scholar 

  24. Yuan, H., Li, G.: A survey of traffic prediction: from spatio-temporal data to intelligent transportation. Data Sci. Eng. 6(1), 63–85 (2021)

    Article  Google Scholar 

  25. Zhang, T., Gao, Y., Qiu, L., Chen, L., Linghu, Q., Pu, S.: Distributed time-respecting flow graph pattern matching on temporal graphs. World Wide Web 23(1), 609–630 (2020). https://doi.org/10.1007/s11280-019-00674-0

    Article  Google Scholar 

  26. Zhang, X., Gao, Y., Lin, J., Lu, C.T.: TapNet: multivariate time series classification with attentional prototypical network. In: Proceedings of AAAI, pp. 6845–6852 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Lin, H., Yao, J. (2021). Unsafe Driving Behavior Prediction for Electric Vehicles. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12858. Springer, Cham. https://doi.org/10.1007/978-3-030-85896-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85896-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85895-7

  • Online ISBN: 978-3-030-85896-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics