Skip to main content

A Behavior-Aware Graph Convolution Network Model for Video Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

Interactions between users and videos are the major data source of performing video recommendation. Despite lots of existing recommendation methods, user behaviors on videos, which imply the complex relations between users and videos, are still far from being fully explored. In the paper, we present a model named Sagittarius. Sagittarius adopts a graph convolutional neural network to capture the influence between users and videos. In particular, Sagittarius differentiates between different user behaviors by weighting and fuses the semantics of user behaviors into the embeddings of users and videos. Moreover, Sagittarius combines multiple optimization objectives to learn user and video embeddings and then achieves the video recommendation by the learned user and video embeddings. The experimental results on multiple datasets show that Sagittarius outperforms several state-of-the-art models in terms of recall, unique recall and NDCG.

This work was supported by the National Natural Science Foundation of China under Grant No. 62072450 and the 2019 joint project with MX Media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baluja, S., et al.: Video suggestion and discovery for Youtube: taking random walks through the view graph. In: Proceedings of the 17th International Conference on World Wide Web, pp. 895–904 (2008)

    Google Scholar 

  2. Berg, R.V.D., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery, pp. 1–7 (2018)

    Google Scholar 

  3. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 27–34 (2020)

    Google Scholar 

  4. Chen, T., Wong, R.C.W.: Handling information loss of graph neural networks for session-based recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1172–1180 (2020)

    Google Scholar 

  5. Dong, X., Jin, B., Zhuo, W., Li, B., Xue, T.: Improving sequential recommendation with attribute-augmented graph neural networks. In: Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2021)

    Google Scholar 

  6. Gao, J., Zhang, T., Xu, C.: A unified personalized video recommendation via dynamic recurrent neural networks. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 127–135 (2017)

    Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 3, 52–74 (2017)

    Google Scholar 

  8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 639–648 (2020)

    Google Scholar 

  9. Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph convolutional networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 659–668 (2020)

    Google Scholar 

  10. Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., Nie, L.: Long-tail hashtag recommendation for micro-videos with graph convolutional network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 509–518 (2019)

    Google Scholar 

  11. Li, Y., Liu, M., Yin, J., Cui, C., Xu, X.S., Nie, L.: Routing micro-videos via a temporal graph-guided recommendation system. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1464–1472 (2019)

    Google Scholar 

  12. MovieLens (2018). https://grouplens.org/datasets/movielens/

  13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  14. Amazon Product (2014). http://jmcauley.ucsd.edu/data/amazon/links.html

  15. Wang, M., Lin, Y., Lin, G., Yang, K., Wu, X.M.: M2GRL: a multi-task multi-view graph representation learning framework for web-scale recommender systems. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2349–2358 (2020)

    Google Scholar 

  16. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  17. Wei, Y., Wang, X., Nie, L., He, X., Hong, R., Chua, T.S.: MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1437–1445 (2019)

    Google Scholar 

  18. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 346–353 (2019)

    Google Scholar 

  19. Xu, C., et al.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI, vol. 19, pp. 3940–3946 (2019)

    Google Scholar 

  20. Xu, J., Zhu, Z., Zhao, J., Liu, X., Shan, M., Guo, J.: Gemini: a novel and universal heterogeneous graph information fusing framework for online recommendations. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3356–3365 (2020)

    Google Scholar 

  21. Xu, X., Chen, L., Zu, S., Zhou, H.: Hulu video recommendation: from relevance to reasoning. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 482–482 (2018)

    Google Scholar 

  22. Xue, T., et al.: Feedback-guided attributed graph embedding for relevant video recommendation. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2020)

    Google Scholar 

  23. Xue, T., Jin, B., Li, B., Wang, W., Zhang, Q., Tian, S.: A spatio-temporal recommender system for on-demand cinemas. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1553–1562 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beihong Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuo, W. et al. (2021). A Behavior-Aware Graph Convolution Network Model for Video Recommendation. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12859. Springer, Cham. https://doi.org/10.1007/978-3-030-85899-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85899-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85898-8

  • Online ISBN: 978-3-030-85899-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics