Skip to main content

Self-residual Embedding for Click-Through Rate Prediction

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

In the Internet, categorical features are high-dimensional and sparse, and to obtain its low-dimensional and dense representation, the embedding mechanism plays an important role in the click-through rate prediction of the recommendation system. Prior works have proved that residual network is helpful to improve the performance of deep learning models, but there are few works to learn and optimize the embedded representation of raw features through residual thought in recommendation systems. Therefore, we designed a self-residual embedding structure to learn the distinction between the randomly initialized embedding vector and the ideal embedding vector by calculating the self-correlation score, and applied it to our proposed SRFM model. Extensive experiments on four real datasets show that the SRFM model can achieve satisfactory performance compared with the superior model. Also, the self-residual embedding mechanism can improve the prediction performance of some existing deep learning models to a certain extent.

Supported by National Natural Science Foundation of China (61702059, 61962038), Guangxi Bagui Teams for Innovation and Research (201979), Science and Technology Development Fund Macau (SKL-IOTSC-2021-2023), University of Macau (MYRG2019-00119-FST).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/avazu-ctr-prediction/data.

  2. 2.

    https://www.kaggle.com/c/criteo-display-ad-challenge/data.

  3. 3.

    https://grouplens.org/datasets/movielens/1m/.

  4. 4.

    https://grouplens.org/datasets/book-crossing/.

References

  1. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  2. Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: learning adaptive-order feature interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence vol. 34, no. (04), pp. 3609–3616 (2020)

    Google Scholar 

  3. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45, 171–186 (2001)

    Google Scholar 

  4. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale Bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search engine. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel, pp. 13–20 (2010)

    Google Scholar 

  5. Han, Y., Gu, P., Gao, W., Xu, G., Wu, J.: Aspect-level sentiment capsule network for micro-video click-through rate prediction. World Wide Web, 1–20 (2021)

    Google Scholar 

  6. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 355–364 (2017)

    Google Scholar 

  7. Huang, F., Li, X., Yuan, C., Zhang, S., Zhang, J., Qiao, S.: Attention-emotion-enhanced convolutional LSTM for sentiment analysis. IEEE Trans. Neural Netw. Learn. Syst., 1–14 (2021). https://doi.org/10.1109/TNNLS.2021.3056664

  8. Huang, T., She, Q., Wang, Z., Zhang, J.: GateNet: gating-enhanced deep network for click-through rate prediction (2020)

    Google Scholar 

  9. Huifeng, G., Ruiming, T., Yunming, Y., Zhenguo, L., Xiuqiang, H.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1725–1731. AAAI Press (2017)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  11. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender Systems. ACM, September 2016

    Google Scholar 

  12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  13. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1754–1763 (2018)

    Google Scholar 

  14. Liu, B., et al.: AutoFIS: automatic feature interaction selection in factorization models for click-through rate prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2020)

    Google Scholar 

  15. Luo, Y., et al.: AutoCross: automatic feature crossing for tabular data in real-world applications. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1936–1945 (2019)

    Google Scholar 

  16. Park, H.-A.: An introduction to logistic regression. J. Korean Acad. Nurs. 43(2), 154–164 (2013)

    Article  Google Scholar 

  17. Qu, Y., et al.: Product-based neural networks for user response prediction. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1149–1154 (2016)

    Google Scholar 

  18. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 995–1000 (2010)

    Google Scholar 

  19. Sheng, X.R., et al.: One model to serve all: star topology adaptive recommender for multi-domain CTR prediction (2021)

    Google Scholar 

  20. Song, W., et al.: AutoInt: automatic feature interaction learning via self-attentive neural networks. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, November 2019

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)

    Google Scholar 

  23. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: ADKDD 2017 (2017)

    Google Scholar 

  24. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.: Attentional factorization machines: learning the weight of feature interactions via attention networks. CoRR abs/1708.04617 (2017)

    Google Scholar 

  25. Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_4

    Chapter  Google Scholar 

  26. Zhao, Z., Fang, Z., Peng, C., Bao, Y., Yan, W.: Dimension relation modeling for click-through rate prediction. In: The 29th ACM International Conference on Information and Knowledge Management, CIKM 2020 (2020)

    Google Scholar 

  27. Zhou, G., Wu, K., Bian, W., Yang, Z., Zhu, X., Gai, K.: Res-embedding for deep learning based click-through rate prediction modeling. In: The 1st International Workshop (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Yin, Y., Huang, F., Zhou, M., U, L.H. (2021). Self-residual Embedding for Click-Through Rate Prediction. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12859. Springer, Cham. https://doi.org/10.1007/978-3-030-85899-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85899-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85898-8

  • Online ISBN: 978-3-030-85899-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics