Skip to main content

Abstract

Enterprise Resource Planning (ERP) systems offer firms a wealth of readily available transactional data. However, deriving insights from such data often demands the examination of multiple issues simultaneously. In this paper we use simple data mining to analyze ERP data from 27 service shops over a period of 35 months. The data has been used to provide valuable business performance insights to the service shop managers. Though the granular ERP data needed to be supplemented by further data in some instances, we found it has the potential to provide real insights into a firm's performance. Such simple data mining approaches can be standardized and automated across service centers for insights that can be used to drive continuous improvement activities within and across sites. We also suggest that this initial, exploratory study opens exciting avenues for further research into business analytics and, business intelligence pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen, M.C.: Big data and service operations. Prod. Oper. Manage. (2018). https://doi.org/10.1111/poms.12832

    Article  Google Scholar 

  2. Powell, D., Alfnes, E., Strandhagen, J.O., Dreyer, H.: The concurrent application of lean production and ERP: towards an ERP-based lean implementation process. Comput. Ind. (2013). https://doi.org/10.1016/j.compind.2012.12.002

    Article  Google Scholar 

  3. Kusiak, A.: Data mining: Manufacturing and service applications. Int. J. Prod. Res. (2006). https://doi.org/10.1080/00207540600632216

    Article  MATH  Google Scholar 

  4. Berry, M.J.A., Linoff, G.S.: Data mining techniques: for marketing, sales, and customer relationship management. Portal.Acm.Org (2004)

    Google Scholar 

  5. Hui, S.C., Jha, G.: Data mining for customer service support. Inf. Manage. (2000). https://doi.org/10.1016/S0378-7206(00)00051-3

    Article  Google Scholar 

  6. Ledolter, J.: Data mining and business analytics with R. Data Min. Bus. Anal. R (2013). https://doi.org/10.1002/9781118596289

    Article  MathSciNet  MATH  Google Scholar 

  7. Elbashir, M.Z., Collier, P.A., Sutton, S.G., Davern, M.J., Leech, S.A.: Enhancing the business value of business intelligence: the role of shared knowledge and assimilation. J. Inf. Syst. (2013). https://doi.org/10.2308/isys-50563

    Article  Google Scholar 

  8. Holsapple, C.W., Sena, M.P.: EP plans and decision-support benefits. Decis. Support Syst. (2005). https://doi.org/10.1016/j.dss.2003.07.001

    Article  Google Scholar 

  9. Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., Das, A.: Researchers’ perspectives on Industry 4.0: multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2020.1798035

  10. Chiarini, A., Vagnoni, E.: Strategies for modern operations management. Benchmarking Int. J. (2017). https://doi.org/10.1108/bij-11-2015-0115

  11. Aslan, B., Stevenson, M., Hendry, L.C.: Enterprise resource planning systems: an assessment of applicability to make-to-order companies. Comput. Ind. (2012). https://doi.org/10.1016/j.compind.2012.05.003

    Article  Google Scholar 

  12. Kakouris, A.P., Polychronopoulos, G.: Enterprise resource planning (ERP) system: an effective tool for production management. Manage. Res. News (2005). https://doi.org/10.1108/01409170510784878

    Article  Google Scholar 

  13. Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining (2005). https://doi.org/10.1002/0471687545

  14. Powell, D., Alfnes, E., Strandhagen, J.O., Dreyer, H.: ERP support for lean production. In: Frick, J., Laugen, B.T. (eds.) APMS 2011. IAICT, vol. 384, pp. 115–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33980-6_14

    Chapter  Google Scholar 

  15. Powell, D.: ERP systems in lean production: new insights from a review of lean and ERP literature. Int. J. Oper. Prod. Manage. (2013). https://doi.org/10.1108/IJOPM-07-2010-0195

    Article  Google Scholar 

  16. Powell, D., Riezebos, J., Strandhagen, J.O.: Lean production and ERP systems in small- and medium-sized enterprises: ERP support for pull production. Int. J. Prod. Res. (2013). https://doi.org/10.1080/00207543.2011.645954

    Article  Google Scholar 

  17. Agrahari, A., Srivastava, S.K.: A data visualization tool to benchmark government tendering process: insights from two public enterprises. Benchmarking (2019). https://doi.org/10.1108/BIJ-06-2017-0148

    Article  Google Scholar 

  18. McGinnis, T.C., Huang, Z.: Rethinking ERP success: a new perspective from knowledge management and continuous improvement. Inf. Manage. (2007). https://doi.org/10.1016/j.im.2007.05.006

    Article  Google Scholar 

  19. Shi, Z., Wang, G.: Integration of big-data ERP and business analytics (BA). J. High Technol. Manage. Res. (2018). https://doi.org/10.1016/j.hitech.2018.09.004

    Article  Google Scholar 

  20. Gupta, S., Qian, X., Bhushan, B., Luo, Z.: Role of cloud ERP and big data on firm performance: a dynamic capability view theory perspective. Manag. Decis. (2019). https://doi.org/10.1108/MD-06-2018-0633

    Article  Google Scholar 

  21. Chou, D.C., Bindu , H., Chou, A.Y.: BI and ERP integration. Inf. Manage. Comput. Secur. (2005). https://doi.org/10.1108/09685220510627241

    Article  Google Scholar 

  22. Erasmus, P., Daneva, M.: An experience report on ERP effort estimation driven by quality requirements. In: CEUR Workshop Proceedings (2015)

    Google Scholar 

  23. Karsak, E.E., Özogul, C.O.: An integrated decision making approach for ERP system selection. Expert Syst. Appl. (2009). https://doi.org/10.1016/j.eswa.2007.09.016

    Article  Google Scholar 

  24. Grover, P., Kar, A.K., Dwivedi, Y.K.: Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03683-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

West, S., Powell, D., Fabian, I. (2021). Service Shop Performance Insights from ERP Data. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-030-85902-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85902-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85901-5

  • Online ISBN: 978-3-030-85902-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics