Skip to main content

Developing Digital Supply Network’s Visibility Towards Transparency and Predictability

  • Conference paper
  • First Online:
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS 2021)

Abstract

Despite advances in Industry 4.0 technologies, supply chains have fallen short in enabling agile supply chain responsiveness. Conceptually, the enablers of connectivity, visibility, and transparency are well defined, yet their operationalization remains a challenge. In this paper, we analyse a successful case study in the domestic electrical machinery industry and derive from it a proposal for data integration lifecycle phases and socio-technical domains to structure the challenges that need to be overcome as a prerequisite for digital supply networks’ visibility towards transparency and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Obaid AlMuhairi, M.: Why COVID-19 makes a compelling case for the wider integration of blockchain. WEF, Global Agenda Blog (2020). https://www.weforum.org/agenda/

  2. Somapa, S., Cools, M., Dullaert, W.: Characterizing supply chain visibility – a literature review. The Int. J. Logist. Manag. 29(1), 308–339 (2018)

    Article  Google Scholar 

  3. Sodhi, M.S., Tang, C.S.: Research opportunities in supply chain transparency. Prod. Oper. Manag. 28(12), 2946–2959 (2019)

    Article  Google Scholar 

  4. Sharma, V., Raut, R.D., et al.: Ravindra Gokhale a systematic literature review to integrate lean, agile, resilient, green and sustainable paradigms in the supply chain management. Bus. Strateg. Environ. 30(2), 1191–1212 (2021)

    Article  Google Scholar 

  5. Kusiak, A.: Fundamentals of smart manufacturing: a multi-thread perspective. Annu. Rev. Control. 47, 214–220 (2019)

    Article  Google Scholar 

  6. Queiroz, M.M., Pereira, S.C.F., et al.: Industry 4.0 and digital supply chain capabilities: a framework for understanding digitalization challenges and opportunities. Benchmark. Int. J. 28, 22.https://doi.org/10.1108/BIJ-12-2018-0435 (2019)

  7. Sinha, A., Bernardes, E., Calderon, R., Wuest, T.: Digital Supply Networks: Transform Your Supply Chain and Gain Competitive Advantage with New Technology and Processes. McGraw-Hill Education, New York (2020)

    Google Scholar 

  8. Nguyen, T., Zhou, L., et al.: Big data analytics in supply chain management: a state-of-the-art literature review. Comput. Oper. Res. 98, 254–264 (2018)

    Article  MathSciNet  Google Scholar 

  9. Shashi, C.P., Cerchione, R., Ertz, M.: Agile supply chain management: where did it come from and where will it go in the era of digital transformation?. Ind. Market. Manag. 90, 324–345 (2020)

    Google Scholar 

  10. Büyüközkan, G., Göçer, F.: Digital supply chain: literature review and a proposed framework for future research. Comput. Ind. 97, 157–177 (2018)

    Article  Google Scholar 

  11. Li, Q., Liu, A.: Big data-driven supply chain management. Procedia CIRP 81, 1089–1094 (2019)

    Article  Google Scholar 

  12. Long, Q.: Data-driven decision making for supply chain networks with agent-based computational experiment. Knowl.-Based Syst. 141, 55–66 (2018)

    Article  Google Scholar 

  13. Sanders, N.R.: Big data-driven supply chain management: a framework for implementing analytics and turning information into intelligence. Pearson Financial Times (2014)

    Google Scholar 

  14. Yu, W., Chavez, R., et al.: Data-driven supply chain capabilities and performance: a resource-based view. Logist. Transp. Rev. 114, 371–385 (2018)

    Article  Google Scholar 

  15. Tan, K.H., Zhan, Y., et al.: Harvesting big data to enhance supply chain innovation capabilities: an analytic infrastructure based on deduction graph. Prod. Econ. 165, 223–233 (2015)

    Article  Google Scholar 

  16. Hazen, B.T., Boone, C.A., et al.: Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Prod. Econ. 154, 72–80 (2014)

    Article  Google Scholar 

  17. Lunde, T.Å., Sjusdal, A.P., Pappas, I.O.: Organizational culture challenges of adopting big data: a systematic literature review. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds.) I3E 2019. LNCS, vol. 11701, pp. 164–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29374-1_14

    Chapter  Google Scholar 

  18. Gupta, M., George, F.J.: Toward the development of a big data analytics capability. Inf. Manag. 53, 1049–1064 (2016)

    Article  Google Scholar 

  19. Sanders, N.R.: How to use big data to drive your supply chain. Calif. Manage. Rev. 58(3), 26–48 (2016)

    Article  Google Scholar 

  20. Davenport, R.T.H., Bean, R.: Big companies are embracing analytics, but most still don’t have a data-driven culture. Harvard Business Review (2018)

    Google Scholar 

  21. Zhu, S., Song, J., Hazen, B.T., Lee, K., Cegielski, C.: How supply chain analytics enables operational supply chain transparency: an organizational information processing theory perspective. Int. J. Phys. Distrib. Logist. Manag. 48(1), 47–68 (2018)

    Google Scholar 

  22. Vieira, A.A.C., Dias, L.M.S., et al.: Supply chain data integration: a literature review. Ind. Inf. Integr. 19, 100161 (2020)

    Google Scholar 

  23. Brinch, M.: Big data and supply chain management: a content-based literature review. 23rd EurOMA Conference, pp. 1–13 (2016)

    Google Scholar 

  24. Gelper, S., Atan, Z., et al.: The Data Ambition Matrix: Awareness Andambition About Data Integration in Supply Chains. European Supply Chain Forum, Eindhoven (2019)

    Google Scholar 

  25. Hammer, M., Champy, C.: Reengineering the Corporation: A Manifesto for Business Revolution. Harper Business, New York (2004)

    Google Scholar 

  26. Gawande, A.: The Checklist Manifesto. Picador, London (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Radke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radke, A.M., Wuest, T., Romero, D. (2021). Developing Digital Supply Network’s Visibility Towards Transparency and Predictability. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-030-85902-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85902-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85901-5

  • Online ISBN: 978-3-030-85902-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics