Skip to main content

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 631))

  • 2871 Accesses

Abstract

In a manufacturing context, the lot-sizing problems (LSP) determine the quantity to produce over a planning horizon. Often, the parameters used in the LSP models are unknown when the decisions are made, and this uncertainty has a critical impact on the quality of the decisions. However, the large amount of data that can nowadays be collected from the shop floor allows inferring information on the LSP parameters and their variability. Therefore, a recent research trend is to properly account for the uncertainty in the LSP optimization models. This work presents a survey on data-driven optimization approaches for the LSPs. We also provide a comparison of some promising optimization methodologies in the context of data-driven modeling of LSPs.

The authors of this paper wish to thank the Region Pays de la Loire (www.paysdelaloire.fr) in France and the Canada Research Chair in Supply Chain Analytics (www.chaireanalytique.hec.ca) for financial support of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  2. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Math. Program. 167(2), 235–292 (2017). https://doi.org/10.1007/s10107-017-1125-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsimas, D., Shtern, S., Sturt, B.: A data-driven approach for multi-stage linear optimization. Available at Optimization Online (2018)

    Google Scholar 

  5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  6. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  Google Scholar 

  7. Dolgui, A., Ammar, O.B., Hnaien, F., Louly, M.A., et al.: A state of the art on supply planning and inventory control under lead time uncertainty. Stud. Inform. Control 22(3), 255–268 (2013)

    Article  Google Scholar 

  8. Dolgui, A., Prodhon, C.: Supply planning under uncertainties in MRP environments: a state of the art. Ann. Rev. Control 31(2), 269–279 (2007)

    Article  Google Scholar 

  9. Gruson, M., Bazrafshan, M., Cordeau, J.F., Jans, R.: A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure. Comput. Oper. Res. 111, 297–310 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 158(1–2), 291–327 (2016)

    Article  MathSciNet  Google Scholar 

  11. Jiang, R., Guan, Y.: Risk-averse two-stage stochastic program with distributional ambiguity. Oper. Res. 66(5), 1390–1405 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ning, C., You, F.: Data-driven stochastic robust optimization: general computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era. Comput. Chem. Eng. 111, 115–133 (2018)

    Article  Google Scholar 

  13. Shang, C., You, F.: Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era. Engineering 5(6), 1010–1016 (2019)

    Article  Google Scholar 

  14. Tempelmeier, H.: Stochastic lot sizing problems. In: Smith, J., Tan, B. (eds.) Handbook of Stochastic Models and Analysis of Manufacturing System Operations. ISOR, vol. 192, pp. 313–344. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6777-9_10

    Chapter  Google Scholar 

  15. Thevenin, S., Adulyasak, Y., Cordeau, J.F.: Material requirements planning under demand uncertainty using stochastic optimization. Prod. Oper. Manag. 30(2), 475–493 (2020)

    Article  Google Scholar 

  16. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5(1), 89–96 (1958)

    Article  MathSciNet  Google Scholar 

  17. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Shen, Z.J.M., Song, S.: Distributionally robust optimization of two-stage lot-sizing problems. Prod. Oper. Manag. 25(12), 2116–2131 (2016)

    Article  Google Scholar 

  19. Zhao, L., Ning, C., You, F.: A data-driven robust optimization approach to operational optimization of industrial steam systems under uncertainty. Comput. Aided Chem. Eng. 46, 1399–1404 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Metzker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. (2021). Optimization for Lot-Sizing Problems Under Uncertainty: A Data-Driven Perspective. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-030-85902-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85902-2_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85901-5

  • Online ISBN: 978-3-030-85902-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics