Skip to main content

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 632))

  • 2964 Accesses

Abstract

In the context of Industry 4.0, both of the ability to handle unexpected events and personalization customization are emphasized. This work investigates a parallel machine scheduling problem with uncertain skill requirements. The problem involves a two-stage decision-making process: (i) determining the workers’ skill training plan and the number of opened machines on the first stage before the realization of uncertain skill requirements, and (ii) scheduling jobs and assigning workers to jobs on the second stage, under known skill requirements. The objective is to minimize the expected total cost, including the workers’ skill training cost, machine opening cost and the expected penalty cost of jobs’ tardiness. A two-stage stochastic programming formulation is proposed, and an illustrative example shows the applicability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Khamis, T., M’Hallah, R.: A two-stage stochastic programming model for the parallel machine scheduling problem with machine capacity. Comput. Oper. Res. 38(12), 1747–1759 (2011)

    Article  MathSciNet  Google Scholar 

  2. Celano, G., Costa, A., Fichera, S.: Scheduling of unrelated parallel manufacturing cells with limited human resources. Int. J. Prod. Res. 46(2), 405–427 (2008)

    Google Scholar 

  3. Chaudhry, I.A.: Minimizing flow time for the worker assignment problem in identical parallel machine models using GA. Int. J. Adv. Manuf. Technol. 48(5–8), 747–760 (2010)

    Article  Google Scholar 

  4. Chaudhry, I.A., Drake, P.R.: Minimizing total tardiness for the machine scheduling and worker assignment problems in identical parallel machines using genetic algorithms. Int. J. Adv. Manuf. Technol. 42(5), 581–594 (2009)

    Article  Google Scholar 

  5. Costa, A., Cappadonna, F.A., Fichera, S.: A hybrid genetic algorithm for job sequencing and worker allocation in parallel unrelated machines with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 69(9), 2799–2817 (2013). https://doi.org/10.1007/s00170-013-5221-5

    Article  Google Scholar 

  6. Dolgui, A., Ivanov, D., Sethi, S.P., Sokolov, B.: Scheduling in production, supply chain and industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications. Int. J. Prod. Res. 57(2), 411–432 (2019)

    Google Scholar 

  7. Dong, C., Chen, M., Wan, G.: Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Comput. Oper. Res. 32(8), 1995–2012 (2005)

    Article  Google Scholar 

  8. Edis, E.B., Oguz, C., Ozkarahan, I.: Parallel machine scheduling with additional resources: notation, classification, models and solution methods. Eur. J. Oper. Res. 230(3), 449–463 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. Manage. Sci. 23(6), 595–605 (2014)

    Google Scholar 

  10. Hofmann, E., Rüsch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017)

    Google Scholar 

  11. Ji, M., Cheng, T.C.E.: Parallel-machine scheduling with simple linear deterioration to minimize total completion time. Eur. J. Oper. Res. 188(2), 342–347 (2008)

    Article  MathSciNet  Google Scholar 

  12. Liu, M., Liu, X., Chu, F., Zhang, E., Chu, C.: Service-oriented robust worker scheduling with motivation effects. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2020.1730998

    Article  Google Scholar 

  13. Liu, M., Liu, X., Chu, F., Zheng, F., Chu, C.: Service-oriented robust parallel machine scheduling. Int. J. Prod. Res. 57(12), 3814–3830 (2019)

    Article  Google Scholar 

  14. Longo, F., Nicoletti, L., Padovano, A.: Smart operators in industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 113, 144–159 (2017)

    Google Scholar 

  15. Machado, C.G., Winroth, M.P., Ribeiro da silva, E.H.D.: Sustainable manufacturing in industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58(5), 1462–1484 (2020)

    Google Scholar 

  16. Pan, Q.K., Suganthan, P.N., Chua, T.J., Cai, T.X.: Solving manpower scheduling problem in manufacturing using mixed-integer programming with a two-stage heuristic algorithm. Int. J. Adv. Manuf. Technol. 46(9–12), 1229–1237 (2010)

    Article  Google Scholar 

  17. Pinedo, M., Hadavi, K.: Scheduling: Theory. Algorithms and Systems. Springer, Berlin (1992). https://doi.org/10.1007/978-1-4614-2361-4

  18. Rosin, F., Forget, P., Lamouri, S., Pellerin, R.: Impacts of industry 4.0 technologies on lean principles. Int. J. Prod. Res. 58(6), 1644–1661 (2020)

    Google Scholar 

  19. Rossit, D.A., Tohmé, F., Frutos, M.: Industry 4.0: smart scheduling. Int. J. Prod. Res. 57(12), 3802–3913 (2018)

    Google Scholar 

  20. Vallada, E., Ruiz, R.: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 211(3), 612–622 (2011)

    Article  MathSciNet  Google Scholar 

  21. Wang, Y., Ma, H.-S., Yang, J.-H., Wang, K.-S.: Industry 4.0: a way from mass customization to mass personalization production. Adv. Manuf. 5(4), 311–320 (2017). https://doi.org/10.1007/s40436-017-0204-7

    Article  Google Scholar 

  22. Xu, X., Cui, W., Lin, J., Qian, Y.: Robust makespan minimisation in identical parallel machine scheduling problem with interval data. Int. J. Prod. Res. 51(12), 3532–3548 (2013)

    Article  Google Scholar 

  23. Yang, D.L., Cheng, T.C.E., Yang, S.J.: Parallel-machine scheduling with controllable processing times and rate-modifying activities to minimise total cost involving total completion time and job compressions. Int. J. Prod. Res. 52(4), 1133–1141 (2014)

    Article  Google Scholar 

  24. Yin, Y., Stecke, Kathryn, E., Li, D.: The evolution of production systems from industry 2.0 through industry 4.0. Int. J. Prod. Res. 56(1–2), 848–861 (2018)

    Google Scholar 

  25. Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J.: Review of job shop scheduling research and its new perspectives under industry 4.0. J. Intell. Manuf. 30, 1809–1830 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grants 72021002, 71771048, 71432007, 71832001 and 72071144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, M. (2021). Parallel Machine Scheduling withStochastic Workforce Skill Requirements. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 632. Springer, Cham. https://doi.org/10.1007/978-3-030-85906-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85906-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85905-3

  • Online ISBN: 978-3-030-85906-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics