Skip to main content

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 633))

  • 4899 Accesses

Abstract

Artificial intelligence developed rapidly, while people are increasingly concerned about internal structure in machine learning models. Starting from the definition of interpretability and historical process of interpretability model, this paper summarizes and analyzes the existing interpretability methods according to the two dimensions of model type and model time based on the objectives of interpretability model and different categories. With the help of the existing interpretable methods, this paper summarizes and analyzes its application value to the society analyzes the reasons why its application is hindered. This paper concretely analyzes and summarizes the applications in industrial fields, including model debugging, feature engineering and data collection. This paper aims to summarizes the shortcomings of the existing interpretability model, and proposes some suggestions based on them. Starting from the nature of interpretability model, this paper analyzes and summarizes the disadvantages of the existing model evaluation index, and puts forward the quantitative evaluation index of the model from the definition of interpretability. Finally, this paper summarizes the above and looks forward to the development direction of interpretability models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gunning, D.: Explainable artificial intelligence (xAI), Technical report, Defense Advanced Research Projects Agency (DARPA) (2017)

    Google Scholar 

  2. Molnar, C.: Interpretable machine learning (2019). https://christophm.github.io/interpretable-ml-book/. Accessed 22 Jan 2019

  3. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2018). [CrossRef]

    Google Scholar 

  4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Google Scholar 

  5. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics (2019)

    Google Scholar 

  6. Lipton, Z.C.: The mythos of model interpretability. arXiv 2016. arXiv:1606.03490

  7. Bengio, Y., Courville, A., et al.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Google Scholar 

  8. Cheng, H., et al.: SRI-Sarnoff AURORA at TRECVID 2014: multimedia event detection and recounting (2014)

    Google Scholar 

  9. Hendricks, L.A, Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating Visual Explanations. arXiv:1603.08507v1 [cs.CV], 28 Mar 2016

  10. Deng, H.: Interpreting tree ensembles with intrees (2014). arXiv:1408.5456

  11. Hara, S., Hayashi, K.: Making tree ensembles interpretable (2016). arXiv:1606.05390

  12. Breiman, L.: Classification and Regression Trees. Routledge (2017)

    Google Scholar 

  13. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 465–474. ACM (2017)

    Google Scholar 

  14. Fu, X., Ong, C., Keerthi, S., Hung, G.G., Goh, L.: Extracting the knowledge embedded in support vector machines. In: IEEE International Joint Conference on Neural Networks, vol. 1, pp. 291–296. IEEE (2004)

    Google Scholar 

  15. Gaonkar, B., Shinohara, R.T., Davatzikos, C., Initiative, A.D.N., et al.: Interpreting support vector machine models for multivariate group wise analysis in neuroimaging. Med. Image Anal. 24(1), 190–204 (2015)

    Article  Google Scholar 

  16. Zilke, J., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

  17. Traoré, R., Caselles-Dupré, H., Lesort, T., Sun, T., Cai, G., Rodríguez, D. Filliat, DisCoRL: continual reinforcement learning via policy distillation (2019).

    Google Scholar 

  18. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences (2016)

    Google Scholar 

  19. Arras, L., Montavon, G., Müller, K.-R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis (2017)

    Google Scholar 

  20. Krakovna, V., Doshi-Velez, F.: Increasing the interpretability of recurrent neural networks using hidden Markov models (2016)

    Google Scholar 

  21. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism, In: Advances in Neural Information Processing Systems, pp. 3504–3512 (2016)

    Google Scholar 

  22. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  23. Zhang, Q., Nian Wu, Y., Zhu, S.-C.: Interpretable convolutional neural networks, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2018)

    Google Scholar 

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  25. Dong, Y., Su, H., Zhu, J., Zhang, B.: Improving interpretability of deep neural networks with semantic information. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4306–4314 (2017)

    Google Scholar 

  26. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)

    Google Scholar 

  27. Olah, C., et al.: The building blocks of interpretability, Distill (2018)

    Google Scholar 

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning (2016)

    Google Scholar 

  29. Papernot, N., McDaniel, P.: Deep k-nearest neighbors: towards confident, interpretable and robust deep learning (2018)

    Google Scholar 

  30. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017). arXiv:1702.08608

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runliang Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, KY., Liu, Y., Li, L., Dou, R. (2021). A Review of Explainable Artificial Intelligence. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-030-85910-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85910-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85909-1

  • Online ISBN: 978-3-030-85910-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics