Skip to main content

Pure Nash Equilibria in a Generalization of Congestion Games Allowing Resource Failures

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2021)

Abstract

We introduce a model for congestion games in which resources can fail with some probability distribution. These games are an extension of classical congestion games, and like these, have exact potential functions that guarantee the existence of pure Nash equilibria (PNE). We prove that the agent’s cost functions for these games can be hard to compute by giving an example of a game for which the cost function is hard for Valiant’s class, even in the case when all failure probabilities coincide. We characterize the complexity of computing PNE in congestion games with failures with an extension of the local search class PLS that allows queries to a function, and show examples of games for which the PNE search problem is complete for this class. We also provide a variant of the game with the property that a PNE can be constructed in polynomial time if this also holds in the restricted game without failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 1–22 (2008)

    Article  MathSciNet  Google Scholar 

  2. Angelidakis, H., Fotakis, D., Lianeas, T.: Stochastic congestion games with risk-averse players. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 86–97. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41392-6_8

    Chapter  Google Scholar 

  3. Beier, R., Czumaj, A., Krysta, P., Vöcking, B.: Computing equilibria for congestion games with (im)perfect information. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 746–755. Citeseer (2004)

    Google Scholar 

  4. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, pp. 604–612 (2004)

    Google Scholar 

  5. Gairing, M.: Malicious Bayesian congestion games. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 119–132. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93980-1_10

    Chapter  Google Scholar 

  6. Georgiou, C., Pavlides, T., Philippou, A.: Selfish routing in the presence of network uncertainty. Parallel Process. Lett. 19(01), 141–157 (2009)

    Article  MathSciNet  Google Scholar 

  7. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)

    Article  MathSciNet  Google Scholar 

  8. Kleinberg, R., Korten, O., Mitropolsky, D., Papadimitriou, C.H.: Total functions in the polynomial hierarchy. In: Lee, J.R. (ed.) 12th Innovations in Theoretical Computer Science Conference. LIPIcs, vol. 185, pp. 44:1–44:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITCS.2021.44

  9. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988). https://doi.org/10.1016/0022-0000(88)90039-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Meir, R., Parkes, D.: Congestion games with distance-based strict uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  11. Meir, R., Tennenholtz, M., Bachrach, Y., Key, P.: Congestion games with agent failures. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26 (2012)

    Google Scholar 

  12. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  Google Scholar 

  13. Nikolova, E., Stier-Moses, N.E.: Stochastic selfish routing. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 314–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24829-0_28

    Chapter  Google Scholar 

  14. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511800481

  15. Penn, M., Polukarov, M., Tennenholtz, M.: Congestion games with failures. In: Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 259–268 (2005)

    Google Scholar 

  16. Penn, M., Polukarov, M., Tennenholtz, M.: Congestion games with load-dependent failures: identical resources. Games Econom. Behav. 67(1), 156–173 (2009)

    Article  MathSciNet  Google Scholar 

  17. Penn, M., Polukarov, M., Tennenholtz, M.: Random order congestion games. Math. Oper. Res. 34(3), 706–725 (2009)

    Article  MathSciNet  Google Scholar 

  18. Penn, M., Polukarov, M., Tennenholtz, M.: Taxed congestion games with failures. Ann. Math. Artif. Intell. 56(2), 133–151 (2009)

    Article  MathSciNet  Google Scholar 

  19. Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under uncertainty. ACM Trans. Econ. Comput. 5(1), 1–27 (2016)

    Article  MathSciNet  Google Scholar 

  20. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)

    Article  MathSciNet  Google Scholar 

  21. Savage, J.E.: Models of Computation - Exploring the Power of Computing. Addison-Wesley, Boston (1998)

    Google Scholar 

  22. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  Google Scholar 

  23. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991). https://doi.org/10.1137/0220053

    Article  MathSciNet  MATH  Google Scholar 

  24. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Nickerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nickerl, J., Torán, J. (2021). Pure Nash Equilibria in a Generalization of Congestion Games Allowing Resource Failures. In: Caragiannis, I., Hansen, K.A. (eds) Algorithmic Game Theory. SAGT 2021. Lecture Notes in Computer Science(), vol 12885. Springer, Cham. https://doi.org/10.1007/978-3-030-85947-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85947-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85946-6

  • Online ISBN: 978-3-030-85947-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics