Skip to main content

Implementation of IoT Platform’s Dashboards for the Visualisation of Dynamic KPIs: Insights from a Case Study

  • Conference paper
  • First Online:
Smart and Sustainable Collaborative Networks 4.0 (PRO-VE 2021)

Abstract

Nowadays, Internet of Things (IoT) platforms are becoming a huge opportunity for companies to collect data from connected machinery and analyse them to increase efficiency in production, optimize maintenance and introduce personalized service offerings. Specifically, multiple users can monitor real-time data and act based on updated information. Nevertheless, few studies are systematically focused on the implementation of Key Performance Indicators (KPIs) in the IoT environment. Based on an empirical case study, the article presents the implementation of dynamic KPI dashboards for an IoT platform, showing the challenges to face related to the trade-off between user desire and companies’ technological readiness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dalzochio, J., et al.: Machine learning and reasoning for predictive maintenance in industry 4.0: current status and challenges. Comput. Ind. 123, 103298 (2020)

    Google Scholar 

  2. Schneider, S.: The Industrial Internet Of Things (IIoT): Applications and Taxonomy, 42 (2017)

    Google Scholar 

  3. Machorro-Cano, I., Alor-Hernández, G., Cruz-Ramos, N., Sanchez-Ramirez, C., Segura-Ozuna, M.: A brief review of IoT platforms and applications in industry. In: New Perspectives on Applied Industrial Tools and Techniques. Management and Industrial Engineering, pp. 293–324. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56871-3_15

  4. Moens, P., et al.: Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications. Sensors 20(15), 4308 (2020)

    Google Scholar 

  5. Subramaniyan, M., Skoogh, A., Salomonsson, H., Bangalore, P., Bokrantz, J.: A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines. Comput. Ind. Eng. 125, 533–544 (2018)

    Google Scholar 

  6. Mate, A., Zoumpatianos, K., Mylopoulos, J., Palpanas, T., Koci, E., Trujillo, J.: A Systematic Approach for Dynamic Targeted Monitoring of KPIs, p. 15 (2014)

    Google Scholar 

  7. Pauli, T., Lin, Y.: The Generativity of Industrial IoT Platforms: Beyond Predictive Maintenance?, p. 7 (2019)

    Google Scholar 

  8. Ante, G., Facchini, F., Mossa, G., Digiesi, S.: Developing a key performance indicators tree for lean and smart production systems. IFAC-PapersOnLine. 51, 13–18 (2018)

    Google Scholar 

  9. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)

    Google Scholar 

  10. Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations – concepts and practice in manufacturing enterprises. Comput. Ind. Eng. 57(1), 46–60 (2009)

    Google Scholar 

  11. Syafrudin, M., Alfian, G., Fitriyani, N.L., Rhee, J.: Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing. Sensors (Basel) 18(9), 2946 (2018)

    Google Scholar 

  12. Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using Winning KPIs, 4th Edition | Wiley. Wiley.com (2010)

    Google Scholar 

  13. Badawy, M., El-Aziz, A.A.A., Idress, A.M., Hefny, H., Hossam, S.: A survey on exploring key performance indicators. Future Comput. Inf. J. 1, 47–52 (2016)

    Google Scholar 

  14. Mörth, O., Eder, M., Holzegger, L., Ramsauer, C.: IoT-based monitoring of environmental conditions to improve the production performance. Procedia Manuf. vol. 45, 283–288 (2020)

    Google Scholar 

  15. Mahmoodpour, M., Lobov, A., Lanz, M., Makela, P., Rundas, N.: Role-based visualization of industrial IoT-based systems. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Oulu, lug, pp. 1–8 (2018)

    Google Scholar 

  16. Papacharalampopoulos, A., Giannoulis, C., Stavropoulos, P., Mourtzis, D.: A digital twin for automated root-cause search of production alarms based on KPIs Aggregated from IoT. Appl. Sci. 10(7), pp. 2377 (2020)

    Google Scholar 

  17. Jovan, V., Zorzut, S.: Use of key performance indicators in production management. In: 2006 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6 (2006)

    Google Scholar 

  18. Hwang, G., Lee, J., Park, J., Chang, T.-W.: Developing performance measurement system for Internet of Things and smart factory environment. Int. J. Prod. Res. 55(9), 2590–2602 (2017)

    Google Scholar 

  19. ISO22400 KPI Manufacturing operations management, Key performance indicator (2011)

    Google Scholar 

  20. prEN 15341 Maintenance - Maintenane Key Performance Indicators. BSi (2006)

    Google Scholar 

  21. Nakajima, S.: Introduction to TPM: Total Productive Maintenance. Productivity Press (1988)

    Google Scholar 

  22. Miller, H., Mork, P.: From data to decisions: a value chain for big data. IT Prof. 15, 57–59 (2013)

    Google Scholar 

  23. Softic, S., Lüftenegger, E., Turcin, I.: Tracking and analyzing processes in smart production. In: Al-Turjman, F. (ed.) Trends in Cloud-based IoT. EICC, pp. 37–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40037-8_3

    Chapter  Google Scholar 

  24. Scapens, R.W.: Researching management accounting practice: the role of case study methods. Bri. Acc. Rev. 22(3), 259–281 (1990)

    Google Scholar 

  25. Voss, C., Tsikriktsis, N., Frohlich, M.: Case research in operations management. Int. J. Oper. Prod. Manage. 22, 195–219 (2002)

    Google Scholar 

  26. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications (1984)

    Google Scholar 

Download references

Acknowledgement

The researchers of the University of Bergamo have been funded by the Erasmus + Knowledge Alliance project DIGIFoF (Digital Design Skills for Factories of the Future - Project Nr. 601089-EPP-1–2018-1-RO-EPPKA2-KA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Venuta , Michela Zambetti , Fabiana Pirola , Giuditta Pezzotta , Piergiorgio Grasseni , Marco Ferrari or Stefano Salvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venuta, M. et al. (2021). Implementation of IoT Platform’s Dashboards for the Visualisation of Dynamic KPIs: Insights from a Case Study. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds) Smart and Sustainable Collaborative Networks 4.0. PRO-VE 2021. IFIP Advances in Information and Communication Technology, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-85969-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85969-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85968-8

  • Online ISBN: 978-3-030-85969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics