Skip to main content

Adaptive Chosen Plaintext Side-Channel Attacks for Higher-Order Masking Schemes

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

  • 1775 Accesses

Abstract

With the wide use of wireless sensor network (WSN), it is very important to ensure the security of wireless devices, especially for the prevention of side channel attacks. Higher-order masking schemes have been proved in theory to be the secure countermeasures against side-channel attacks. When d th-order masking is involved, the complexity of performing a higher-order SCA grows exponentially with the order d, which can be regarded as the main difficulty for the higher-order analysis. Since the plaintext is random in the traditional analysis process, the attack can be successfully carried out but the efficiency is not high. To reduce the number of traces for higher-order analysis, we combine the measurement setup with selecting plaintexts. We first describe an efficient chosen plaintext strategy for the unprotected design, called Adaptive Chosen Plaintext Power Analysis (ACPPA). Moreover, we apply the adaptive chosen plaintext strategy for different combining functions which is more efficient than the existing higher-order attacks. Finally, we finish the experiments to verify the efficiency of our methods in unmasked and masked contexts by success rate, guessing entropy and the number of traces to recover the secret key.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ge, C., Susilo, W., Liu, Z., Xia, J., Szalachowski, P., Liming, F.: Secure keyword search and data sharing mechanism for cloud computing. IEEE Trans. Dependable Secure Comput. https://doi.org/10.1109/TDSC.2020.2963978

  2. Ge, C., Susilo, W., Baek, J., Liu, Z., Xia, J., Fang, L.: Revocable attribute-based encryption with data integrity in clouds. IEEE Trans. Dependable Secure Comput. https://doi.org/10.1109/TDSC.2021.3065999

  3. Ge, C., Liu, Z., Fang, L., Ling, H., Zhang, A., Yin, C.: A hybrid fuzzy convolution-al neural network based mechanism for photovoltaic cell defect detection with electroluminescence images. IEEE Trans. Parallel Distrib. Syst. 32(7), 1653–1664 (2021). https://doi.org/10.1109/TPDS.2020.3046018

    Article  Google Scholar 

  4. Kim, Y., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Biasing power traces to improve correlation power analysis attacks. In: First International Workshop on Constructive Side Channel Analysis and Secure Design (COSADE 2010), pp. 77–80 (2010)

    Google Scholar 

  5. Kim, Y., Ko, H.: Using principal component analysis for practical biasing of power traces to improve power analysis attacks. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 109–120. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_7

    Chapter  Google Scholar 

  6. Zhou, X., et al.: An adaptive singular value decomposition-based method to enhance correlation electromagnetic analysis. In: IEEE International Symposium on Electromagnetic Compatibility (EMC). IEEE 2016, pp. 170–175 (2016)

    Google Scholar 

  7. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_18

    Chapter  Google Scholar 

  8. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

    Chapter  Google Scholar 

  9. Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers revisiting the (in)security of some provably secure encryption modes: CBC, GEM, IACBC. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_2

    Chapter  MATH  Google Scholar 

  10. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_16

    Chapter  Google Scholar 

  11. Peng, X., Wei, H., Zhang, P.: Chosen-plaintext attack on lensless double-random phase encoding in the fresnel domain. Opt. Lett. 31(22), 3261–3263 (2006)

    Article  Google Scholar 

  12. Bergen, H.A., Hogan, J.M.: A chosen plaintext attack on an adaptive arithmetic coding compression algorithm. Comput. Secur. 12(2), 157–167 (1993)

    Article  Google Scholar 

  13. Schindler, W.: A timing attack against RSA with the Chinese remainder theorem. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_8

    Chapter  Google Scholar 

  14. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_12

    Chapter  Google Scholar 

  15. Ou, C., Wang, Z., Sun, D., Zhou, X., Ai, J., Pang, N.: Enhanced correlation power analysis by biasing power traces. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 59–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_5

    Chapter  Google Scholar 

  16. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  17. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  18. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-38162-6

  19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  20. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  21. Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_19

    Chapter  Google Scholar 

  22. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_13

    Chapter  Google Scholar 

  23. Clavier, C., et al.: Practical improvements of side channel attacks on AES: feedback from the 2nd DPA contest. J. Cryptogr. Eng. 4(4), 259–274 (2014)

    Article  MathSciNet  Google Scholar 

  24. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  25. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_25

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (NO.62072247, NO.61972295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shougang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Huang, Y., Tang, M., Ren, S., Xu, H. (2021). Adaptive Chosen Plaintext Side-Channel Attacks for Higher-Order Masking Schemes. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics