Skip to main content

A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

Abstract

Federated learning ensures that the quality of the model is uncompromised while the resulting global model is consistent with the model trained by directly collecting user data. However, the risk of inferring data considered in federated learning. Furthermore, the inference to the learning outcome considered in a federated learning environment must satisfy that data cannot be inferred from any outcome except the owner of the data. In this paper, we propose a new federated learning scheme based on secure multi-party computation (SMC) and differential privacy. The scheme prevents inference during the learning process as well as inference of the output. Meanwhile, the scheme protects the user’s local data during the learning process to ensure the correctness of the results after users’ midway exits through the process.

Supported by the National Key Research and Development Project under Grant 2020YFB1711900, National Natural Science Foundation of China under Grant 62072065, the Key Project of Technology Innovation and Application Development of Chongqing under Grant cstc2019jscx-mbdxX0044, and the Overseas Returnees Innovation and Entrepreneurship Support Program of Chongqing under Grant cx2020004 and cx2018015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)

    Google Scholar 

  2. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated learning with non-iid data in AIoT. IEEE Trans. Industr. Inform. (2021)

    Google Scholar 

  3. Yuwen, P., Chunqiang, H., Deng, S., Alrawais, A.: R\(^2\)peds: a recoverable and revocable privacy-preserving edge data sharing scheme. IEEE Internet Things J. 7(9), 8077–8089 (2020)

    Article  Google Scholar 

  4. Chunqiang, H., Liao, X., Cheng, X.: Verifiable multi-secret sharing based on LFSR sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  6. Hu, C., Cheng, X., Tian, Z., Yu, J., Lv, W.: Achieving privacy preservation and billing via delayed information release. IEEE/ACM Trans. Netw. (2021)

    Google Scholar 

  7. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  8. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  9. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2020)

    Article  Google Scholar 

  10. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020)

    Article  Google Scholar 

  11. Cai, Z., Xiong, Z., Xu, H., Wang, P., Li, W., Pan, Y.: Generative adversarial networks: a survey towards private and secure applications. ACM Comput. Surv. (CSUR) (2021)

    Google Scholar 

  12. Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Trans. Dependable Secure Comput. 15(4), 577–590 (2016)

    Google Scholar 

  13. Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018)

    Article  Google Scholar 

  14. Hu, R., Guo, Y., Li, H., Pei, Q., Gong, Y.: Personalized federated learning with differential privacy. IEEE Internet Things J. 7(10), 9530–9539 (2020)

    Article  Google Scholar 

  15. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  16. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  19. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9

    Chapter  MATH  Google Scholar 

  20. Yun, A., Cheon, J.H., Kim, Y.: On homomorphic signatures for network coding. IEEE Trans. Comput. 59(9), 1295–1296 (2010)

    Article  MathSciNet  Google Scholar 

  21. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 844–855 (2014)

    Google Scholar 

  22. Xing, K., Chunqiang, H., Jiguo, Y., Cheng, X., Zhang, F.: Mutual privacy preserving \( k \)-means clustering in social participatory sensing. IEEE Trans. Industr. Inf. 13(4), 2066–2076 (2017)

    Article  Google Scholar 

  23. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 439–450 (2000)

    Google Scholar 

  24. Chunqiang, H., Li, W., Cheng, X., Jiguo, Yu., Wang, S., Bie, R.: A secure and verifiable access control scheme for big data storage in clouds. IEEE Trans. Big Data 4(3), 341–355 (2017)

    Google Scholar 

  25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  26. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunlei Fu or Chunqiang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mou, W., Fu, C., Lei, Y., Hu, C. (2021). A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics