Skip to main content

TFRA: Trajectory-Based Message Ferry Recognition Attack in UAV Network

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

  • 1443 Accesses

Abstract

The introduction of ferry UAVs (message ferry) in the UAV network is an effective means to solve the cooperative communication of multiple UAVs. The ferry UAVs act as message collectors and throwers in the network to improve data transmission efficiency, the critical roles that ferry plays have made them the target of sophisticated attacks, ferry should be protected, otherwise, routing efficiency and data delivery of the network will be affected. Since the movement mode of ferry nodes is different from the ordinary nodes, this paper attempts to distinguish ordinary node and ferry node through trajectory analysis, then we propose a Trajectory-based message Ferry Recognition Attack (TFRA) which is easy for an attacker to implement, using the idea of trajectory clustering to distinguish the trajectory of the ferry node, and obtain the location for further attacks. At the same time, we conducted a systematic study on the existing path planning scheme of ferry node, and summarized several typical types of message ferry path planning schemes, then evaluated the performance of TFRA in these schemes. The results show TFRA can attack ferry nodes with high accuracy and recognition rate.

Sponsored by the Natural Science Foundation of China (Grant No. 61902199); NUPTSF (Grant No. NY219142); State Key Laboratory for Novel Software Technology (Grant No. KFKT2019B13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crazyflie 2.1. https://www.bitcraze.io/products/crazyflie-2-1/

  2. Radar data processing. https://grasswiki.osgeo.org/wiki/Radar_data_processing

  3. Sklearn:feature selection and recursive feature elimination. https://scikit-learn.org, https://www.scikit-yb.org

  4. Agrawal, P., Ghosh, R.K., Das, S.K.: Cooperative black and gray hole attacks in mobile ad hoc networks. In: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, pp. 310–314 (2008)

    Google Scholar 

  5. Alnuaimi, M., Shuaib, K., Alnuaimi, K., Abdel-Hafez, M.: Data gathering in delay tolerant wireless sensor networks using a ferry. Sensors 15(10), 25809–25830 (2015)

    Article  Google Scholar 

  6. Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. Int. J. Comput. Geomet. Appl. 5(01n02), 75–91 (1995)

    Google Scholar 

  7. Ammar, M., Chakrabarty, D., Sarma, A.D., Kalyanasundaram, S., Lipton, R.J.: Algorithms for message ferrying on mobile ad hoc networks. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

    Google Scholar 

  8. Asadpour, M., Hummel, K.A., Giustiniano, D., Draskovic, S.: Route or carry: motion-driven packet forwarding in micro aerial vehicle networks. IEEE Trans. Mobile Comput. 16(3), 843–856 (2016)

    Article  Google Scholar 

  9. Atev, S., Miller, G., Papanikolopoulos, N.P.: Clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 11(3), 647–657 (2010)

    Article  Google Scholar 

  10. Barton, D.K.: Modern radar system analysis. ah (1988)

    Google Scholar 

  11. Tariq, M.M.B., Ammar, M., Zegura, E.: Message ferry route design for sparse ad hoc networks with mobile nodes. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 37–48 (2006)

    Google Scholar 

  12. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Encyclopedia of distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2

  13. Guangjie Han, X., Miao, H.W., Guizani, M., Zhang, W.: CPSLP: a cloud-based scheme for protecting source location privacy in wireless sensor networks using multi-sinks. IEEE Trans. Veh. Technol. 68(3), 2739–2750 (2019)

    Article  Google Scholar 

  14. Han, G., Zhou, L., Wang, H., Zhang, W., Chan, S.: A source location protection protocol based on dynamic routing in WSNS for the social internet of things. Futur. Gener. Comput. Syst. 82, 689–697 (2018)

    Article  Google Scholar 

  15. Hu, C.-L., Lin, H.-Y., Hsu, Y.-F., Huang, S.-Z., Hui, L., Zhang, Z.: Message forwarding with ferries in delay-tolerant networks. In: 2019 28th Wireless and Optical Communications Conference (WOCC), pp. 1–5. IEEE (2019)

    Google Scholar 

  16. Jiang, J., Han, G., Wang, H., Guizani, M.: A survey on location privacy protection in wireless sensor networks. J. Netw. Comput. Appl. 125, 93–114 (2019)

    Article  Google Scholar 

  17. Konstantopoulos, C., Pantziou, G., Vathis, N., Nakos, V., Gavalas, D.: Efficient mobile sink-based data gathering in wireless sensor networks with guaranteed delay. In: Proceedings of the 12th ACM International Symposium on Mobility Management and Wireless Access, pp. 47–54 (2014)

    Google Scholar 

  18. Manathara, J.G., Sujit, P.B., Beard, R.W.: Multiple UAV coalitions for a search and prosecute mission. J. Intell. Robot. Syst. 62(1), 125–158 (2011)

    Article  Google Scholar 

  19. Maza, I., Caballero, F., Capitán, J., Dios, J.R.M., Ollero, A.: Experimental results in multi-UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. 61(1–4), 563–585 (2011)

    Article  Google Scholar 

  20. Merino, L., Caballero, F., Ramiro Martínez-De-Dios, J., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1–4), 533–548 (2012)

    Google Scholar 

  21. Pu, C., Carpenter, L.: To route or to ferry: a hybrid packet forwarding algorithm in flying ad hoc networks. In: 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2019)

    Google Scholar 

  22. Salarian, H., Chin, K.-W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2013)

    Article  Google Scholar 

  23. Shah, R.C., Roy, S., Jain, S., Brunette, W.: mules: modeling and analysis of a three-tier architecture for sparse sensor networks (2003)

    Google Scholar 

  24. Wang, H., Han, G., Zhang, W., Guizani, M., Chan, S.: A probabilistic source location privacy protection scheme in wireless sensor networks. IEEE Trans. Veh. Technol. 68(6), 5917–5927 (2019)

    Article  Google Scholar 

  25. Wang, H., Han, G., Zhou, L., Ansere, J.A., Zhang, W.: A source location privacy protection scheme based on ring-loop routing for the IoT. Comput. Netw. 148, 142–150 (2019)

    Google Scholar 

  26. Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in wireless sensor networks with mobile elements. IEEE Trans. Mob. Comput. 7(12), 1430–1443 (2008)

    Article  Google Scholar 

  27. Peng, J., Gao, H., Liu, L., Wu, Y., Xu, X.: FNTAR: a future network topology-aware routing protocol in UAV networks. In: IEEE Wireless Communications and Networking Conference (WCNC) (2020)

    Google Scholar 

  28. Yoon, J., Lee, A.-H., Lee, H.: Rendezvous: opportunistic data delivery to mobile users by UAVs through target trajectory prediction. IEEE Trans. Veh. Technol. 69, 2230–2245 (2019)

    Article  Google Scholar 

  29. Zhu, S., Wang, D., Low, C.B.: Ground target tracking using UAV with input constraints. J. Intell. Robot. Syst. 69(1–4), 417–429 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuting Wu or Liang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Liu, Y., Liu, L., Wang, F., Fan, L., Zhou, Q. (2021). TFRA: Trajectory-Based Message Ferry Recognition Attack in UAV Network. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics