Skip to main content

Lightweight Threshold Private Set Intersection via Oblivious Transfer

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

Abstract

As a significant basis for privacy-preserving applications of Secure Multiparty Computation (MPC), Private Set Intersection (PSI) has long been a question of great interest in a wide range of field, such as ad conversion rates and private contact tracing. Threshold PSI (\(t\)-\(\mathsf {PSI}\)), a variant of PSI, allows two parties to learn the intersection of two sets only if the cardinality of intersection is larger (or lesser) than a threshold t. In this paper, we give a generic \(t\)-\(\mathsf {PSI}\) construction that relies heavily on Oblivious Transfer (OT). Without resorting to the relatively expensive homomorphic calculation approaches from public-key mechanism, two kinds of \(t\)-\(\mathsf {PSI}\) protocols could be efficiently implemented based on our proposed construction, i.e., \(t^{\scriptscriptstyle {\le }}\mathsf {PSI}\) and \(t^{\scriptscriptstyle {>}}\text {-}\mathsf {PSI}\). Specially, we construct two efficient protocols named secret-sharing private equality test and membership text , which enable PSI to scale to a wide range of practical applications. The experimental simulation results show that our protocols are efficient and computation friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  2. Zhao, C., et al.: Secure multi-party computation: theory, practice and applications. Inf. Sci. 476, 357–372 (2019)

    Article  Google Scholar 

  3. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 818–829 (2016)

    Google Scholar 

  4. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_2

    Chapter  Google Scholar 

  5. Song, X., Gai, M., Zhao, S., Jiang, H.: Privacy-preserving statistics protocol for set-based computation. J. Comput. Res. Dev. 57(10), 2221 (2020). (in Chinese)

    Google Scholar 

  6. Zhao, C., Jiang, H., Wei, X., Xu, Q., Zhao, M.: Cut-and-choose bilateral oblivious transfer and its application. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 384–391. IEEE (2015)

    Google Scholar 

  7. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1257–1272 (2017)

    Google Scholar 

  8. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union from symmetric-key techniques. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_23

    Chapter  Google Scholar 

  9. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_5

    Chapter  Google Scholar 

  10. Karakoç, F., Küpçü, A.: Linear complexity private set intersection for secure two-party protocols. Cryptology ePrint Archive, Report 2020/864 (2020). https://eprint.iacr.org/2020/864

  11. Zhao, Y., Chow, S.S.M.: Are you the one to share? Secret transfer with access structure. In: Proceedings on Privacy Enhancing Technologies 2017, no. 1, pp. 149–169 (2017)

    Google Scholar 

  12. Zhao, Y., Chow, S.S.M.: Can you find the one for me? In: Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pp. 54–65 (2018)

    Google Scholar 

  13. Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_1

    Chapter  Google Scholar 

  14. Badrinarayanan, S., Miao, P., Rindal, P.: Multi-party threshold private set intersection with sublinear communication. IACR Cryptology ePrint Archive 2020:600 (2020)

    Google Scholar 

  15. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  16. http://note.youdao.com/s/RXCVwsI1

Download references

Acknowledgements

We thank the anonymous reviewers. This work was supported by the National Natural Science Foundation of China under Grant 61632020, and the Special Project of Science and Technology Innovation Base of Key Laboratory of Software Engineering of Shandong Province under Grant 11480004042015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Jiang or Qiuliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, S., Ma, M., Song, X., Jiang, H., Yan, Y., Xu, Q. (2021). Lightweight Threshold Private Set Intersection via Oblivious Transfer. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics