Skip to main content

Jointly Optimizing Throughput and Cost of IoV Based on Coherent Beamforming and Successive Interference Cancellation Technology

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

Abstract

The high transmission performance of 5G provides the Internet of Vehicles (IoV) more opportunities for doing tasks which need to handle large amount of data within a small time span. However, 5G base station has a small coverage and a high cost which may restrict its development in the IoV. In this paper, we try to give some feasible solution for this problem. We will use two physical layer techniques, the coherent beamforming (CB) technology and the successive interference cancellation (SIC) technology to increase the total amount of data transmitted by vehicles while reducing network infrastructure costs. We first establish the mathematical model and prove it couldn’t be solved directly, and then design two algorithms, the Road and CB-nodes Assignment (RCA) algorithm and the Throughput Optimization of Vehicle Scheduling based on SIC (TOVSS) algorithm. Simulation results show that our method has the advantages of cost saving and throughput improvement.

Supported by the National Natural Science Foundation of China (Grant No. 61806067), the Anhui Provincial Key R&D Program of China (202004a05020040).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, L., Lu, S., et al.: Computing systems for autonomous driving: state-of-the-art and challenges. IEEE Internet of Things J. 8, 6469–6486 (2020)

    Article  Google Scholar 

  2. Wang, W., Xia, F., et al.: Vehicle trajectory clustering based on dynamic representation learning of Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 22, 1–10 (2020)

    Google Scholar 

  3. Cai, Z., Shi, T.: Distributed query processing in the edge assisted IoT data monitoring system. IEEE Internet of Things J. 8, 12679–12693 (2020)

    Article  Google Scholar 

  4. Duan, Z., Li, W., et al.: Distributed auctions for task assignment and scheduling in mobile crowdsensing systems. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 635–644 (2017)

    Google Scholar 

  5. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7, 766–775 (2020)

    Article  MathSciNet  Google Scholar 

  6. He, X., Lu, H., et al.: QoE-based task offloading with deep reinforcement learning in edge-enabled Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 22, 1–10 (2020)

    Google Scholar 

  7. Cao, Y., Chen, Y.: QoE-based node selection strategy for edge computing enabled Internet-of-Vehicles (EC-IoV). In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)

    Google Scholar 

  8. Luo, Q., et al.: Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE Trans. Serv. Comput. 14, 1–1 (2021)

    Google Scholar 

  9. Shah, S.A.A., Ahmed, E., et al.: 5G for vehicular communications. IEEE Commun. Mag. 56(1), 111–117 (2018)

    Article  Google Scholar 

  10. Cheng, X., Chen, C., et al.: 5G-enabled cooperative intelligent vehicular framework: when Benz meets Marconi. IEEE Intell. Syst. 32(3), 53–59 (2017)

    Article  Google Scholar 

  11. Ozgun, K., Tierney, J., et al.: An adapted coherent flow power doppler beamforming scheme for improved sensitivity towards blood signal energy. In: 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2018)

    Google Scholar 

  12. Deng, H., Geng, Z., et al.: Mimo radar waveform design for transmit beamforming and orthogonality. IEEE Trans. Aerosp. Electron. Syst. 52(3), 1421–1433 (2016)

    Article  Google Scholar 

  13. Shi, Y., Sagduyu, Y.E.: Coherent communications in self-organizing networks with distributed beamforming. IEEE Trans. Veh. Technol. 69(1), 760–770 (2020)

    Article  Google Scholar 

  14. Jiang, C., Shi, Y., et al.: Cross-layer optimization for multi-hop wireless networks with successive interference cancellation. IEEE Trans. Wireless Commun. 15(8), 5819–5831 (2016)

    Article  Google Scholar 

  15. Shi, L., Li, Z., et al.: Full-duplex multi-hop wireless networks optimization with successive interference cancellation. Sensors (Basel, Switzerland) 18(12), 4301–4316 (2018)

    Article  Google Scholar 

  16. Liang, Y., Wei, Z., et al.: Neighbor discovery algorithm in wireless ad hoc networks based on successive interference cancellation technology. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1137–1141 (2020)

    Google Scholar 

  17. Xu, J., Lan, W., et al.: Research on 5G internet of vehicles facilities based on coherent beamforming. In: The 15th International Conference on Wireless Algorithms, Systems, and Applications (WASA), Qingdao, China, 13–15 September, pp. 68–77 (2020)

    Google Scholar 

  18. Shi, L., Han, J., et al.: Maximizing throughput for wireless sensor network with multi-packet reception. Telecommun. Sci. 27(3), 47–53 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Xu, J., Shi, L., Bi, X., Shi, Y. (2021). Jointly Optimizing Throughput and Cost of IoV Based on Coherent Beamforming and Successive Interference Cancellation Technology. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics