Skip to main content

Research on Path Planning for Relay Drones with Multiple Constraints

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

  • 1609 Accesses

Abstract

There are many applications of UAV relay networks in large-scale and long-distance scenarios. In such applications, reasonable path planning is conducive to reducing the travel distance and improving the adaptability of UAV networks. We propose a path planning algorithm for UAVs based on the formulation of an optimization problem, with the objectives of maintaining connectivity, minimizing the required movements and avoiding the deployment of more relay UAVs than necessary. The heuristic algorithm is compared to other methods in terms of the quality of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2015)

    Article  Google Scholar 

  2. Bekmezci, I., Sahingoz, O.K., Temel, Ş: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  3. Zhu, Q., Zhou, R., Zhang, J.: Connectivity maintenance based on multiple relay UAVs selection scheme in cooperative surveillance. Appl. Sci. 7(1), 8 (2017)

    Article  Google Scholar 

  4. de Silva, R., Rajasinghege, S.: Optimal desired trajectories of UAVs in private UAV networks. In: 2018 International Conference on Advanced Technologies for Communications (ATC), pp. 310–314 (2018)

    Google Scholar 

  5. Wang, J., Li, C.X., Chi, W., Meng, M.Q.: Tropistic RRT*: an efficient planning algorithm via adaptive restricted sampling space. In: 2018 IEEE International Conference on Information and Automation (ICIA), pp. 1639–1646 (2018)

    Google Scholar 

  6. Chen, J., Li, M., Yuan, Z., Gu, Q.: An improved A* algorithm for UAV path planning problems. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 958–962 (2020)

    Google Scholar 

  7. Zhou, Z., Zhang, C., Xu, C., Xiong, F., Zhang, Y., Umer, T.: Energy-efficient industrial Internet of UAVs for power line inspection in smart grid. IEEE Trans. Ind. Inf. 14(6), 2705–2714 (2018)

    Article  Google Scholar 

  8. Sánchez-García, J., Reina, D.G., Toral, S.L.: A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Fut. Gener. Comput. Syst. 90, 129–148 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, D., Qian, H. (2021). Research on Path Planning for Relay Drones with Multiple Constraints. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics