Abstract
Mobile edge computing is widely applied to help mobile devices to improve its data processing speed. However, one of its main challenges is how to generate computation offloading decision effectively and quickly in the complex wireless scenario. In this paper, we aim to build up a multiple user devices application scenario, where each device performs binary computation offloading policy which is executed in the local device or offloaded to a cloud server via the wireless network. A model based on deep reinforcement learning is proposed to optimize computation offloading decisions. First, the weighted rate of offloading computation is introduced to be a reward in the Q function. Second, offloading decisions are generated from a deep Q-network (DQN) with batch normalization layers. At last, the deep Q-network is trained with a designed prioritized replay policy. Experimental results indicate the proposed model generates the optimal offloading decisions in a short time and gets faster convergence speed on the weighted rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yuyi, M., Jun, Z., Khaled, L.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)
Huang L., Feng X., Feng A., Huang Y., Qian P.: Distributed deep learning-based offloading for mobile edge computing networks. Mobile Netw. Appl. (2018). https://doi.org/10.1007/s11036-018-1177-x
Lillicrap, T., Hunt, J., Pritzel, A., et al.: Continuous control with deep reinforcement learning. In: ICLR (2016)
Liang, H., Suzhi, B., Yingjun, Z.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2020)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp.448–456. JMLR.org, Lille (2015)
Schaul, T., Quan, J., Antonoglou, I., et al.: Prioritized experience replay. Computer Science (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, W., Wang, C., Mi, J., Luan, H., Luo, Y. (2021). A Reinforcement Model Based Prioritized Replay to Solve the Offloading Problem in Edge Computing. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-86137-7_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86136-0
Online ISBN: 978-3-030-86137-7
eBook Packages: Computer ScienceComputer Science (R0)