Abstract
Due to advantages of moving feasibility and placing flexibility, Unmanned Aerial Vehicle (UAV) mounted Base Stations (UAV-BSs) have been widely utilized to assist congested cellular networks in several scenarios. In this paper, we study the deployment of UAV-BSs to alleviate traffic congestion in cellular networks. We formulate the network model for a UAV-assisted cellular network and formulate the deployment problem. In order to solve this problem, we propose a UAV deployment algorithm to deploy a number of UAV-BSs providing wireless communication services for ground user devices. The algorithm first initializes the service connection between UDs and SBSs. Secondly, UAV-BSs are deployed to ensure that all ground user devices are covered with a minimum number of UAV-BSS. Finally, UAV-BSs’ altitudes are adjusted to minimize the coverage range and reduce energy consumption. Furthermore, numerical results demonstrate the efficiency of our proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sekander, S., Tabassum, H., Hossain, E.: Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun. Mag. 56(3), 96–103 (2018)
Mozaffari, M., Kasgari, A.T.Z., Saad, W., Bennis, M.: Beyond 5G with UAVs: foundations of a 3D wireless cellular network. IEEE Trans. Wireless Commun. 18(1), 357–372 (2018)
Azari, M.M., Geraci, G., Garcia-Rodriguez, A., Pollin, S.: UAV-to-UAV communications in cellular networks. IEEE Trans. Wireless Commun. 19(9), 6130–6144 (2020)
Bin, L., Fei, Z., Zhang, Y.: UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 6(2), 2241–2263 (2018)
Trotta, A., Felice, M.D., Montori, F., Chowdhury, K.R., Bononi, L.: Joint coverage, connectivity, and charging strategies for distributed UAV networks. IEEE Trans. Rob. 34(4), 883–900 (2018)
Liu, X., Wang, X., Jia, J., Huang, M.: A distributed deployment algorithm for communication coverage in wireless robotic networks. J. Netw. Comput. Appl. 180, 103019 (2021)
Ruan, L., et al.: Energy-efficient multi-UAV coverage deployment in UAV networks: a game-theoretic framework. China Commun. 15(10), 194–209 (2018)
Savkin, A.V., Huang, H.: Deployment of unmanned aerial vehicle base stations for optimal quality of coverage. IEEE Wireless Commun. Lett. 8(1), 321–324 (2019)
Zhao, H., Wang, H., Wu, W., Wei, J.: Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE J. Sel. Areas Commun. 36(9), 2015–2031 (2018)
Wang, H., Zhao, H., Wu, W., Xiong, J., Ma, D., Wei, J.: Deployment algorithms of flying base stations: 5G and beyond with UAVs. IEEE Internet Things J. 6(6), 10009–10027 (2019)
Al-Hourani, A., Kandeepan, S., Lardner, S.: Optimal LAP altitude for maximum coverage. IEEE Wireless Commun. Lett. 3(6), 569–572 (2014)
Bor-Yaliniz, R.I., El-Keyi, A., Yanikomeroglu, H.: Efficient 3-D placement of an aerial base station in next generation cellular networks. In: IEEE International Conference on Communications (ICC), Malaysia, pp. 1–5 (2016)
Acknowledgments
This work is supported by the National Natural Science Foundation of China under Grant No. 61872073 and the LiaoNing Revitalization Talents Program under Grant No. XLYC1902010.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, X., Wang, X., Jia, J., Bartolini, N., Sun, Y. (2021). Deployment of UAV-BS for Congestion Alleviation in Cellular Networks. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-86137-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86136-0
Online ISBN: 978-3-030-86137-7
eBook Packages: Computer ScienceComputer Science (R0)