Skip to main content

Deployment of UAV-BS for Congestion Alleviation in Cellular Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

  • 1683 Accesses

Abstract

Due to advantages of moving feasibility and placing flexibility, Unmanned Aerial Vehicle (UAV) mounted Base Stations (UAV-BSs) have been widely utilized to assist congested cellular networks in several scenarios. In this paper, we study the deployment of UAV-BSs to alleviate traffic congestion in cellular networks. We formulate the network model for a UAV-assisted cellular network and formulate the deployment problem. In order to solve this problem, we propose a UAV deployment algorithm to deploy a number of UAV-BSs providing wireless communication services for ground user devices. The algorithm first initializes the service connection between UDs and SBSs. Secondly, UAV-BSs are deployed to ensure that all ground user devices are covered with a minimum number of UAV-BSS. Finally, UAV-BSs’ altitudes are adjusted to minimize the coverage range and reduce energy consumption. Furthermore, numerical results demonstrate the efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sekander, S., Tabassum, H., Hossain, E.: Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun. Mag. 56(3), 96–103 (2018)

    Article  Google Scholar 

  2. Mozaffari, M., Kasgari, A.T.Z., Saad, W., Bennis, M.: Beyond 5G with UAVs: foundations of a 3D wireless cellular network. IEEE Trans. Wireless Commun. 18(1), 357–372 (2018)

    Article  Google Scholar 

  3. Azari, M.M., Geraci, G., Garcia-Rodriguez, A., Pollin, S.: UAV-to-UAV communications in cellular networks. IEEE Trans. Wireless Commun. 19(9), 6130–6144 (2020)

    Article  Google Scholar 

  4. Bin, L., Fei, Z., Zhang, Y.: UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 6(2), 2241–2263 (2018)

    Google Scholar 

  5. Trotta, A., Felice, M.D., Montori, F., Chowdhury, K.R., Bononi, L.: Joint coverage, connectivity, and charging strategies for distributed UAV networks. IEEE Trans. Rob. 34(4), 883–900 (2018)

    Article  Google Scholar 

  6. Liu, X., Wang, X., Jia, J., Huang, M.: A distributed deployment algorithm for communication coverage in wireless robotic networks. J. Netw. Comput. Appl. 180, 103019 (2021)

    Article  Google Scholar 

  7. Ruan, L., et al.: Energy-efficient multi-UAV coverage deployment in UAV networks: a game-theoretic framework. China Commun. 15(10), 194–209 (2018)

    Article  Google Scholar 

  8. Savkin, A.V., Huang, H.: Deployment of unmanned aerial vehicle base stations for optimal quality of coverage. IEEE Wireless Commun. Lett. 8(1), 321–324 (2019)

    Article  Google Scholar 

  9. Zhao, H., Wang, H., Wu, W., Wei, J.: Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE J. Sel. Areas Commun. 36(9), 2015–2031 (2018)

    Article  Google Scholar 

  10. Wang, H., Zhao, H., Wu, W., Xiong, J., Ma, D., Wei, J.: Deployment algorithms of flying base stations: 5G and beyond with UAVs. IEEE Internet Things J. 6(6), 10009–10027 (2019)

    Article  Google Scholar 

  11. Al-Hourani, A., Kandeepan, S., Lardner, S.: Optimal LAP altitude for maximum coverage. IEEE Wireless Commun. Lett. 3(6), 569–572 (2014)

    Article  Google Scholar 

  12. Bor-Yaliniz, R.I., El-Keyi, A., Yanikomeroglu, H.: Efficient 3-D placement of an aerial base station in next generation cellular networks. In: IEEE International Conference on Communications (ICC), Malaysia, pp. 1–5 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61872073 and the LiaoNing Revitalization Talents Program under Grant No. XLYC1902010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wang, X., Jia, J., Bartolini, N., Sun, Y. (2021). Deployment of UAV-BS for Congestion Alleviation in Cellular Networks. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics