Skip to main content

Graph Representation Learning in Document Wikification

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Abstract

Wikification (entity annotation) is a challenging task in Natural Language Processing (NLP). It is a method to automatically enrich a text with links to Wikipedia as a knowledge base. Wikification starts from detecting ambiguous mentions in the document, and later tries to disambiguate those mentions. In the core of the Wikification task, there is one other important NLP task: word representation. This paper proposes a new word representation for senses of a mention with Graph convolutional networks architecture. Senses are the possible meanings of one mention, based on the knowledge base. In our representation modeling, we used the context document and the first paragraph of each Wikipedia page to enhance our contextual representation. Using the nearest neighbor algorithm for disambiguating the mentions via our sense representations, we show the efficiency of our representations. The results of comparing our method with recent state-of-the-art methods show the efficiency of our solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A mention can be one or more tokens.

  2. 2.

    https://huggingface.co/bert-base-cased.

  3. 3.

    The notation we used for GCN in this paper are the same as notations in [59].

  4. 4.

    We used this dataset of the second category from: https://github.com/asajadi/wikisim/tree/master/datasets.

  5. 5.

    https://tagme.d4science.org/tagme/.

References

  1. Aghaebrahimian, A., Cieliebak, M.: Named entity disambiguation at scale. In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition Proceeding, pp. 102–110 (2020)

    Google Scholar 

  2. Aleksandrova, D., Drouin, P., Lareau, F.C.C.O., Venant, A.: The multilingual automatic detection of ’e nonc é s bias ’e s in wikip é dia. ACL (2020)

    Google Scholar 

  3. Amos, L., Anderson, D., Brody, S., Ripple, A., Humphreys, B.L.: UMLS users and uses: a current overview. J. Am. Med. Inform. Assoc. 27(10), 1606–1611 (2020)

    Article  Google Scholar 

  4. Azad, H.K., Deepak, A.: A new approach for query expansion using Wikipedia and wordnet. Inf. Sci. 492, 147–163 (2019)

    Article  Google Scholar 

  5. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: Proceedings of GSCL, pp. 31–40 (2009)

    Google Scholar 

  6. Camacho-Collados, J., Pilehvar, M.T.: From word to sense embeddings: a survey on vector representations of meaning. J. Artif. Intell. Res. 63, 743–788 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and disambiguation. In: EMNLP, pp. 1025–1035 (2014)

    Google Scholar 

  8. Cilibrasi, R.L., Vitanyi, P.M.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)

    Article  Google Scholar 

  9. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: EMNLP, pp. 708–716 (2007). https://www.aclweb.org/anthology/D07-1074.pdf

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Dixit, V., Dutta, K., Singh, P.: Word sense disambiguation and its approaches. CPUH Res. J. 1(2), 54–58 (2015)

    Google Scholar 

  12. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by Wikipedia entities). In: ACM, pp. 1625–1628 (2010)

    Google Scholar 

  13. Hajar, E.H., Mohammed, B.: Using synonym and definition wordnet semantic relations for implicit aspect identification in sentiment analysis. In: NISS, pp. 1–5 (2019)

    Google Scholar 

  14. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Documentation 53–60 (1972)

    Google Scholar 

  15. Kim, M.C., Nam, S., Wang, F., Zhu, Y.: Mapping scientific landscapes in UMLs research: a scientometric review. J. Am. Med. Inform. Assoc. 27(10), 1612–1624 (2020)

    Article  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Kraljevic, Z., et al.: MedCAT-medical concept annotation tool. arXiv preprint arXiv:1912.10166 (2019). https://arxiv.org/ftp/arxiv/papers/1912/1912.10166.pdf

  18. Kwon, S., Oh, D., Ko, Y.: Word sense disambiguation based on context selection using knowledge-based word similarity. Inf. Process. Manage. 58(4), 102551 (2021)

    Article  Google Scholar 

  19. Lee, J., Fuxman, A., Zhao, B., Lv, Y.: Leveraging knowledge bases for contextual entity exploration. In: Proceedings of ACM, pp. 1949–1958 (2015)

    Google Scholar 

  20. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Systems Documentation, pp. 24–26 (1986)

    Google Scholar 

  21. Li, B.: Named entity recognition in the style of object detection. arXiv preprint arXiv:2101.11122 (2021)

  22. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI, Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, vol. 32, pp. 234–242 (2018)

    Google Scholar 

  23. Logeswaran, L., Chang, M.W., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. arXiv preprint arXiv:1906.07348. https://arxiv.org/pdf/1906.07348.pdf (2019)

  24. Loureiro, D., Jorge, A.: Language modelling makes sense: propagating representations through wordnet for full-coverage word sense disambiguation. In Proceedings of ACM, pp. 5682–5691 (2019)

    Google Scholar 

  25. Mao, Y., Fung, K.W.: Use of word and graph embedding to measure semantic relatedness between unified medical language system concepts. J. Am. Med. Inform. Assoc. 27(10), 1538–1546 (2020)

    Article  Google Scholar 

  26. Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semant. Web Preprint 11, 255–335 (2020)

    Article  Google Scholar 

  27. Melamud, O., Goldberger, J., Dagan, I.: context2vec: learning generic context embedding with bidirectional LSTM. In: SIGNL, pp. 51–61 (2016)

    Google Scholar 

  28. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: ACM, pp. 233–242 (2007)

    Google Scholar 

  29. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of ICLR, vol. 4, pp. 321–329 (2013)

    Google Scholar 

  30. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicography 3(4), 235–244 (1990)

    Article  Google Scholar 

  31. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)

    Google Scholar 

  32. Munirsyah, M., Bijaksana, M.A., Astuti, W.: Development synonym set for the English wordnet using the method of comutative and agglomerative clustering. Jurnal Sisfokom (Sistem Informasi dan Komputer) 9(2), 171–176 (2020). http://jurnal.atmaluhur.ac.id/index.php/sisfokom/article/download/855/633

  33. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 1–69 (2009)

    Article  Google Scholar 

  34. Nguyen, D.B., Hoffart, J., Theobald, M., Weikum, G.: AIDA-light: high-throughput named-entity disambiguation. In: LDOW, vol. 14, pp. 22–32 (2014)

    Google Scholar 

  35. Pasini, T., Elia, F.M., Navigli, R.: Huge automatically extracted training sets for multilingual word sense disambiguation. arXiv preprint arXiv:1805.04685 (2018)

  36. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, Qatar, pp. 1532–1543 (2014)

    Google Scholar 

  37. Peters, M., et al.: Deep contextualized word representations. Association for Computational Linguistics, pp. 2227–2237 (2018)

    Google Scholar 

  38. Peters, M.E., Logan IV, R.L., Schwartz, R., Joshi, V., Singh, S., Smith, N.A.: Knowledge enhanced contextual word representations. arXiv preprint arXiv:1909.04164 (2019)

  39. Peters, M.E., Neumann, M., Zettlemoyer, L., Yih, W.T.: Dissecting contextual word embeddings: architecture and representation. In: EMNLP, pp. 1499–1509 (2018)

    Google Scholar 

  40. Piccinno, F., Ferragina, P.: From TagME to WAT: a new entity annotator. In: Proceedings of the First International Workshop on Entity Recognition & Disambiguation, pp. 55–62. ACM (2014)

    Google Scholar 

  41. Raganato, A., Bovi, C.D., Navigli, R.: Automatic construction and evaluation of a large semantically enriched Wikipedia. In: IJCAI, pp. 2894–2900 (2016)

    Google Scholar 

  42. Raganato, A., Bovi, C.D., Navigli, R.: Neural sequence learning models for word sense disambiguation. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1156–1167 (2017)

    Google Scholar 

  43. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to Wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 1375–1384 (2011)

    Google Scholar 

  44. Reisinger, J., Mooney, R.: Multi-prototype vector-space models of word meaning. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 109–117 (2010)

    Google Scholar 

  45. Saeidi, M., Sousa, S.B.d.S., Milios, E., Zeh, N., Berton, L.: Categorizing online harassment on Twitter. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 283–297 (2019)

    Google Scholar 

  46. Sajadi, A.: Semantic analysis using Wikipedia graph structure. Ph.D. thesis, Dalhousie University (2018)

    Google Scholar 

  47. Scarlini, B., Pasini, T., Navigli, R.: SensEmBERT: context-enhanced sense embeddings for multilingual word sense disambiguation. In: AAAI, pp. 8758–8765 (2020)

    Google Scholar 

  48. Scarlini, B., Pasini, T., Navigli, R.: With more contexts comes better performance: contextualized sense embeddings for all-round word sense disambiguation. In: EMNLP, pp. 3528–3539 (2020)

    Google Scholar 

  49. Shnayderman, I., et al.: Fast end-to-end wikification. arXiv preprint arXiv:1908.06785 (2019)

  50. Singh, H., Bhattacharyya, P.: A survey on word sense disambiguation. ACM Comput. Surv. (CSUR) (2019)

    Google Scholar 

  51. Song, Y., Roth, D.: Machine learning with world knowledge: the position and survey. arXiv preprint arXiv:1705.02908 (2017)

  52. Sysoev, A., Nikishina, I.: Smart context generation for disambiguation to Wikipedia. In: Conference on Artificial Intelligence and Natural Language, pp. 11–22 (2018)

    Google Scholar 

  53. Szymański, J., Naruszewicz, M.: Review on wikification methods. AI Commun. 27(2), 97–111 (2019)

    MathSciNet  Google Scholar 

  54. Wang, Y., Wang, M., Fujita, H.: Word sense disambiguation: a comprehensive knowledge exploitation framework. Knowl. Based Syst. 105–117 (2019)

    Google Scholar 

  55. Weikum, G., Dong, L., Razniewski, S., Suchanek, F.: Machine knowledge: creation and curation of comprehensive knowledge bases. arXiv preprint arXiv:2009.11564 (2020)

  56. West, R., Paranjape, A., Leskovec, J.: Mining missing hyperlinks from human navigation traces: a case study of Wikipedia. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1242–1252 (2015)

    Google Scholar 

  57. Xin, K., Hua, W., Liu, Y., Zhou, X.: LoG: a locally-global model for entity disambiguation. World Wide Web 24, 1–23 (2020)

    Google Scholar 

  58. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32, 221–229 (2019)

    Google Scholar 

  59. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, Honolulu, vol. 33, pp. 7370–7377 (2019)

    Google Scholar 

  60. Zhang, Y., Ives, Z., Roth, D.: “who said it, and why?” provenance for natural language claims. In: ACL, pp. 4416–4426 (2020)

    Google Scholar 

  61. Zhao, G., Wu, J., Wang, D., Li, T.: Entity disambiguation to Wikipedia using collective ranking. Inf. Process. Manage. 52(6), 1247–1257 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhgan Saeidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saeidi, M., Milios, E., Zeh, N. (2021). Graph Representation Learning in Document Wikification. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12917. Springer, Cham. https://doi.org/10.1007/978-3-030-86159-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86159-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86158-2

  • Online ISBN: 978-3-030-86159-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics