Skip to main content

A Handwritten Text Detection Model Based on Cascade Feature Fusion Network Improved by FCOS

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12917))

Included in the following conference series:

  • 2030 Accesses

Abstract

In this paper, we propose a method for detecting handwritten ancient texts. The challenges in detecting this type of data are: the complexity of the layout of handwritten ancient texts, the varying text sizes, mixed arrangement of pictures and texts, the high number of hand-drawn patterns and the high background noise. Unlike general scene text detection tasks (ICDAR, TotalText, etc.), the texts in the images of ancient books are more densely distributed. For the features of the dataset, we propose a detection model based on cascade feature fusion called DFCOS, which aims to improve the fusion of localization information in lower layers. Specifically, bottom-up paths are created to use more localization signals from low-levels, and we incorporate skip connections to better extract information in the backbone, and then improve our model by parallel cascading. We verified the effectiveness of our DFCOS on HWAD (Handwritten Ancient-Books Dataset), a dataset containing four languages - Yi, Chinese, Tibetan and Tangut - provided by the Institute of Yi of Guizhou University of Engineering Science and National Digital Library of China, and its precision, recall and F-measure outperformed most of the existing text detection models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  3. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection, arXiv preprint. arXiv: 1612.03144 (2017)

  4. Handwritten Ancient-Books Dataset: HWAD. Unpublished Data

    Google Scholar 

  5. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  6. Bodla, N., Singh, B., Chellappa, R., Davis, L.: Improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  7. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI (2020)

    Google Scholar 

  8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: Textboxes: a fast text detector with a single deep neural network. In: AAAI (2017)

    Google Scholar 

  11. Zhou, X., et al.: East: an efficient and accurate scene text detector. In: CVPR (2017)

    Google Scholar 

  12. Zhang, C., et al.: Look more than once: an accurate detector for text of arbitrary shapes. In: CVPR (2019)

    Google Scholar 

  13. Deng, D., Liu, H., Li, X., Cai, D.: PixelLink: detecting scene text via instance segmentation. In: AAAI, pp. 6773–6780 (2018)

    Google Scholar 

  14. Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: CVPR (2019)

    Google Scholar 

  15. Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with differentiable binarization. In: AAAI (2020)

    Google Scholar 

  16. Su, X., Gao, G.: A knowledge-based recognition system for historical Mongolian documents. Int. J. Document Anal. Recogn. Neural Netw. 124, 117–129 (2020)

    Google Scholar 

  17. Shi, X., Huang, Y., Liu, Y.: Text on oracle rubbing segmentation method based on connected domain. In: Proceedings of IEEE Advanced Information Management, Communicates Electronic and Automation Control Conference, pp. 414–418. IEEE Computer Society Press, Anyang (2016)

    Google Scholar 

  18. Hailin, Y., Lianwen, J., Weiguo, H., et al.: Dense and tight detection of Chinese characters in historical documents: datasets and a recognition guided detector. IEEE Access 6, 30174–30183 (2018)

    Article  Google Scholar 

  19. Han, Y.H., Wang, W.L., Wang, Y.Q.: Research on automatic block binarization method of stained Tibetan historical document image based on Lab color space. In: International Forum on Management, Education and Information Technology Application, pp. 327–338 (2018)

    Google Scholar 

  20. Huang, G., Liu, Z., Maaten, L., Weinberger, Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: ICCV (2016)

    Google Scholar 

  22. Rezatofighi, H., Tsoi, N., Gwak, J.Y., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  23. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: ICDAR 2015 (2015)

    Google Scholar 

  24. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  25. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  26. Chen, K., et al.: MMDetection: Open MMLab Detection Toolbox and Benchmark, arXiv preprint. arXiv: 1906.07155 (2019)

  27. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4

    Chapter  Google Scholar 

  28. Shi, B., Bai, X., Belongie, S.: Detecting oriented text in natural images by linking segments. In: Proceedings of CVPR, pp. 3482–3490 (2017)

    Google Scholar 

  29. Liao, M., Zhu, Z., Shi, B., Xia, G.-S., Bai, X.: Rotation-sensitive regression for oriented scene text detection. In: CVPR (2018)

    Google Scholar 

  30. Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text detection. In: CVPR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxiong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, R., Zhao, F., Chen, S., Zhang, S., Wang, D. (2021). A Handwritten Text Detection Model Based on Cascade Feature Fusion Network Improved by FCOS. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12917. Springer, Cham. https://doi.org/10.1007/978-3-030-86159-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86159-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86158-2

  • Online ISBN: 978-3-030-86159-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics