Skip to main content

A Public Ground-Truth Dataset for Handwritten Circuit Diagram Images

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12916))

Included in the following conference series:

  • 1866 Accesses

Abstract

The development of digitization methods for line drawings – especially in the area of electrical engineering – relies on the availability of publicly available training and evaluation data. This paper presents such an image set along with annotations. The dataset consists of \(1152\) images of \(144\) circuits by \(12\) drafters and \(48\,539\) annotations. Each of these images depicts an electrical circuit diagram taken by consumer grade cameras under varying lighting conditions and perspectives. A variety of different pencil types and surface materials has been used. For each image, all individual electrical components are annotated with bounding boxes and one out of \(45\) class labels. In order to simplify a graph extraction process, different helper symbols like junction points and crossovers are introduced, while texts are annotated as well. The geometric and taxonomic problems arising from this task as well as the classes themselves and statistics of their appearances are stated. The performance of a standard Faster RCNN on the dataset is provided as an object detection baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://osf.io/ju9ck/.

  2. 2.

    https://opensource.org/licenses/MIT.

References

  1. Abdel-Majeed, M., et al.: Sketic: a machine learning-based digital circuit recognition platform. Turkish J. Electr. Eng. Comput. Sci. 28, 2030–2045 (2020)

    Google Scholar 

  2. Alvarado, C., Davis, R.: Sketchread: a multi-domain sketch recognition engine. In: 2004 Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, UIST 2004, pp. 23–32, New York, NY, USA. Association for Computing Machinery. https://doi.org/10.1145/1029632.1029637. ISBN 1581139578

  3. Alvarado, C., et al.: LogiSketch: a free-sketch digital circuit design and simulation SystemLogiSketch. In: Hammond, T., Valentine, S., Adler, A., Payton, M. (eds.) The Impact of Pen and Touch Technology on Education. HIS, pp. 83–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15594-4_8 ISBN 1581139578

    Chapter  Google Scholar 

  4. Edwards, B., Chandran, V.: Machine recognition of hand-drawn circuit diagrams. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (Cat. No. 00CH37100), vol. 6, pp. 3618–3621 (2000)

    Google Scholar 

  5. Everingham, M., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  6. He, K., et al.: Deep residual learning for image recognition. CoRR, abs/1512.03385, (2015). http://arxiv.org/abs/1512.03385

  7. Liwicki, M., Knipping, L.: Recognizing and simulating sketched logic circuits. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005, Part III. LNCS (LNAI), vol. 3683, pp. 588–594. Springer, Heidelberg (2005). https://doi.org/10.1007/11553939_84

    Chapter  Google Scholar 

  8. Moetesum, M., et al.: Segmentation and recognition of electronic components in hand-drawn circuit diagrams. EAI Endorsed Trans. Scalable Inf. Syst. 5, e12 (2018)

    Google Scholar 

  9. Patare, M.D., Joshi, M.: Hand-drawn digital logic circuit component recognition using SVM. Int. J. Comput. Appl. 143, 24–28 (2016)

    Google Scholar 

  10. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  11. torchvision. https://github.com/pytorch/vision

  12. Tzutalin. Labelimg. https://github.com/tzutalin/labelImg

Download references

Acknowledgement

The authors coardially thank Thilo Pütz, Anshu Garg, Marcus Hoffmann, Michael Kussel, Shahroz Malik, Syed Rahman, Mina Karami Zadeh, Muhammad Nabeel Asim and all other drafters who contributed to the dataset. This research was funded by the German Bundesministerium für Bildung und Forschung (Project SensAI, grant no. 01IW20007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thoma, F., Bayer, J., Li, Y., Dengel, A. (2021). A Public Ground-Truth Dataset for Handwritten Circuit Diagram Images. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12916. Springer, Cham. https://doi.org/10.1007/978-3-030-86198-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86198-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86197-1

  • Online ISBN: 978-3-030-86198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics