Skip to main content

Writer Characterization from Handwriting on Papyri Using Multi-step Feature Learning

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Abstract

Identification of scribes from historical manuscripts has remained an equally interesting problem for paleographers as well as the pattern classification researchers. Though significant research endeavors have been made to address the writer identification problem in contemporary handwriting, the problem remains challenging when it comes to historical manuscripts primarily due to the degradation of documents over time. This study targets scribe identification from ancient documents using Greek handwriting on the papyri as a case study. The technique relies on segmenting the handwriting from background and extracting keypoints which are likely to carry writer-specific information. Using the handwriting keypoints as centers, small fragments (patches) are extracted from the image and are employed as units of feature extraction and subsequent classification. Decisions from fragments of an image are then combined to produce image-level decisions using a majority vote. Features are learned using a two-step fine-tuning of convolutional neural networks where the models are first tuned on contemporary handwriting images (relatively larger dataset) and later tuned to the small set of writing samples under study. The preliminary findings of the experimental study are promising and establish the potential of the proposed ideas in characterizing writer from a challenging set of writing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamid, A., Bibi, M., Siddiqi, I., Moetesum, M.: Historical manuscript dating using textural measures. In: 2018 International Conference on Frontiers of Information Technology (FIT), pp. 235–240. IEEE (2018)

    Google Scholar 

  2. Baird, H.S., Govindaraju, V., Lopresti, D.P.: Document analysis systems for digital libraries: challenges and opportunities. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 1–16. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28640-0_1

    Chapter  Google Scholar 

  3. Le Bourgeois, F., Trinh, E., Allier, B., Eglin, V., Emptoz, H.: Document images analysis solutions for digital libraries. In: First International Workshop on Document Image Analysis for Libraries, 2004, Proceedings, pp. 2–24. IEEE (2004)

    Google Scholar 

  4. Sankar, K.P., Ambati, V., Pratha, L., Jawahar, C.V.: Digitizing a Million books: challenges for document analysis. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 425–436. Springer, Heidelberg (2006). https://doi.org/10.1007/11669487_38

    Chapter  Google Scholar 

  5. Klemme, A.: International dunhuang project: the silk road online. Reference Reviews (2014)

    Google Scholar 

  6. Jouili, S., Coustaty, M., Tabbone, S., Ogier, J.-M.: NAVIDOMASS: structural-based approaches towards handling historical documents. In: 2010 20th International Conference on Pattern Recognition, pp. 946–949 (2010)

    Google Scholar 

  7. Hamid, A., Bibi, M., Moetesum, M., Siddiqi, I.: Deep learning based approach for historical manuscript dating. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 967–972 (2019)

    Google Scholar 

  8. Aiolli, F., Ciula, A.: A case study on the system for paleographic inspections (SPI): challenges and new developments. Comput. Intell. Bioeng. 196, 53–66 (2009)

    Google Scholar 

  9. He, S., Samara, P., Burgers, J., Schomaker, L.: Image-based historical manuscript dating using contour and stroke fragments. Pattern Recogn. 58, 159–171 (2016)

    Google Scholar 

  10. Srihari, S.N., Cha, S.-H., Arora, H., Lee, S.: Individuality of handwriting. J. Forensic Sci. 47(4), 1–17 (2002)

    Google Scholar 

  11. Said, H.E., Tan, T.N., Baker, K.D.: Personal identification based on handwriting. Pattern Recogn. 33(1), 149–160 (2000)

    Google Scholar 

  12. He, Z., You, X., Tang, Y.Y.: Writer identification using global wavelet-based features. Neurocomputing 71(10–12), 1832–1841 (2008)

    Google Scholar 

  13. He, S., Schomaker, L.: Deep adaptive learning for writer identification based on single handwritten word images. Pattern Recogn. 88, 64–74 (2019)

    Google Scholar 

  14. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)

    Google Scholar 

  15. Siddiqi, I., Vincent, N.: Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features. Pattern Recogn. 43(11), 3853–3865 (2010)

    Google Scholar 

  16. Xing, L., Qiao, Y.: DeepWriter: a multi-stream deep CNN for text-independent writer identification. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 584–589. IEEE (2016)

    Google Scholar 

  17. Nasir, S., Siddiqi, I.: Learning features for writer identification from handwriting on Papyri. In: Djeddi, C., Kessentini, Y., Siddiqi, I., Jmaiel, M. (eds.) MedPRAI 2020. CCIS, vol. 1322, pp. 229–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71804-6_17

    Chapter  Google Scholar 

  18. Mohammed, H. Marthot-Santaniello, I., Märgner, V.: GRK-Papyri: a dataset of greek handwriting on papyri for the task of writer identification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 726–731 (2019)

    Google Scholar 

  19. Rehman, A., Naz, S., Razzak, M.I., Hameed, I.A.: Automatic visual features for writer identification: a deep learning approach. IEEE Access 7, 17149–17157 (2019)

    Google Scholar 

  20. Xing, L., Qiao, Y.: DeepWriter: a multi-stream deep CNN for text-independent writer identification. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 584–589 (2016)

    Google Scholar 

  21. Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 991–997 (2017)

    Google Scholar 

  22. Keglevic, M., Fiel, S., Sablatnig, R.: Learning features for writer retrieval and identification using triplet CNNs. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 211–216 (2018)

    Google Scholar 

  23. Awaida, S.M., Mahmoud, S.A.: State of the art in off-line writer identification of handwritten text and survey of writer identification of Arabic text. Educ. Res. Rev. 7(20), 445–463 (2012)

    Google Scholar 

  24. Tan, G.J., Sulong, G., Rahim, M.S.M.: Writer identification: a comparative study across three world major languages. Forensic Sci. Int. 279, 41–52 (2017)

    Google Scholar 

  25. He, S., Schomaker, L.: FragNet: writer identification using deep fragment networks. IEEE Trans. Inf. Forensics Secur. 15, 3013–3022 (2020)

    Google Scholar 

  26. Kumar, B., Kumar, P., Sharma, A.: RWIL: robust writer identification for Indic language. In: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 695–700 (2018)

    Google Scholar 

  27. Tang, Y., Wu, X.: Text-independent writer identification via CNN features and joint Bayesian. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 566–571, October 2016

    Google Scholar 

  28. Nasuno, R., Arai, S.: Writer identification for offline Japanese handwritten character using convolutional neural network. In: Proceedings of the 5th IIAE (Institute of Industrial Applications Engineers) International Conference on Intelligent Systems and Image Processing, pp. 94–97 (2017)

    Google Scholar 

  29. Chen, S., Wang, Y., Lin, C.-T., Ding, W., Cao, Z.: Semi-supervised feature learning for improving writer identification. Inf. Sci. 482, 156–170 (2019)

    Google Scholar 

  30. Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_3

    Chapter  Google Scholar 

  31. Nguyen, H.T., Nguyen, C.T., Ino, T., Indurkhya, B., Nakagawa, M.: Text-independent writer identification using convolutional neural network. Pattern Recogn. Lett. 121, 104–112 (2019)

    Google Scholar 

  32. Christlein, V., Bernecker, D., Maier, A., Angelopoulou, E.: Offline writer identification using convolutional neural network activation features. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 540–552. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_45

    Chapter  Google Scholar 

  33. Javidi, M., Jampour, M.: A deep learning framework for text-independent writer identification. Eng. Appl. Artif. Intell. 95, 103912 (2020)

    Google Scholar 

  34. Schomaker, L., Franke, K., Bulacu, M.: Using codebooks of fragmented connected-component contours in forensic and historic writer identification. Pattern Recogn. Lett. 28(6), 719–727 (2007)

    Google Scholar 

  35. Lai, S., Zhu, Y., Jin, L.: Encoding pathlet and SIFT features with bagged VLAD for historical writer identification. IEEE Trans. Inf. Forensics Secur. 15, 3553–3566 (2020)

    Google Scholar 

  36. Abdeljalil, G., Djeddi, C., Siddiqi, I., Al-Maadeed, S.: Writer identification on historical documents using oriented basic image features. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 369–373 (2018)

    Google Scholar 

  37. Chammas, M., Makhoul, A., Demerjian, J.: Writer identification for historical handwritten documents using a single feature extraction method. In: 19th International Conference on Machine Learning and Applications (ICMLA 2020) (2020)

    Google Scholar 

  38. Cilia, N.D., et al.: A two-step system based on deep transfer learning for writer identification in medieval books. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 305–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_27

    Chapter  Google Scholar 

  39. Cilia, N., De Stefano, C., Fontanella, F., Marrocco, C., Molinara, M., Di Freca, A.S.: An end-to-end deep learning system for medieval writer identification. Pattern Recogn. Lett. 129, 137–143 (2020)

    Google Scholar 

  40. Mohammed, H., Märgner, V., Stiehl, H.S.: Writer identification for historical manuscripts: analysis and optimisation of a classifier as an easy-to-use tool for scholars from the humanities. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 534–539 (2018)

    Google Scholar 

  41. Studer, L., et al.: A comprehensive study of ImageNet pre-training for historical document image analysis. arXiv preprint arXiv:1905.09113 (2019)

  42. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)

    Google Scholar 

  43. He, S., Schomaker, L.: DeepOtsu: document enhancement and binarization using iterative deep learning. Pattern Recogn. 91, 379–390 (2019)

    Google Scholar 

  44. Fiel, S., Hollaus, F., Gau, M., Sablatnig, R.: Writer identification on historical Glagolitic documents. In: Document Recognition and Retrieval XXI, vol. 9021, p. 902102. International Society for Optics and Photonics (2014)

    Google Scholar 

  45. Bennour, A., Djeddi, C., Gattal, A., Siddiqi, I., Mekhaznia, T.: Handwriting based writer recognition using implicit shape codebook. Forensic Sci. Int. 301, 91–100 (2019)

    Google Scholar 

  46. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  47. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  48. Marti, U.-V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

    Google Scholar 

  49. Gazda, M., Hireš, M., Drotár, P.: Multiple-fine-tuned convolutional neural networks for Parkinson’s disease diagnosis from offline handwriting. IEEE Trans. Syst. Man Cybern. Syst. (2021)

    Google Scholar 

  50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  51. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  52. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)

Download references

Acknowledgements

Authors would like to thank Dr. Isabelle Marthot-Santaniello from University of Basel, Switzerland for making the dataset available.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasir, S., Siddiqi, I., Moetesum, M. (2021). Writer Characterization from Handwriting on Papyri Using Multi-step Feature Learning. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12916. Springer, Cham. https://doi.org/10.1007/978-3-030-86198-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86198-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86197-1

  • Online ISBN: 978-3-030-86198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics