Skip to main content

Data Augmentation for End-to-End Optical Music Recognition

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12916))

Included in the following conference series:

Abstract

Optical Music Recognition (OMR) is the research area that studies how to transcribe the content from music documents into a structured digital format. Within this field, techniques based on Deep Learning represent the current state of the art. Nevertheless, their use is constrained by the large amount of labeled data required, which constitutes a relevant issue when dealing with historical manuscripts. This drawback can be palliated by means of Data Augmentation (DA), which encompasses a series of strategies to increase data without the need of manual labeling new images. This work studies the applicability of specific DA techniques in the context of end-to-end staff-level OMR methods. More precisely, considering two corpora of historical music manuscripts, we applied different types of distortions to the music scores and assessed their contribution in an end-to-end system. Our results show that some transformations are much more appropriate than others, leading up to a \(34.5\%\) of relative improvement with respect to scenario without DA.

J. C. López-Gutiérrez—Independent Researcher.

This work was supported by the Generalitat Valenciana through grant APOSTD/2020/256, grant ACIF/2019/042, and project GV/2020/030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaro-Contreras, M., Valero-Mas, J.J.: Exploiting the two-dimensional nature of agnostic music notation for neural optical music recognition. Appl. Sci. 11(8), 3621 (2021)

    Article  Google Scholar 

  2. Baró, A., Badal, C., Fornés, A.: Handwritten historical music recognition by sequence-to-sequence with attention mechanism. In: 17th International Conference on Frontiers in Handwriting Recognition, ICFHR 2020, Dortmund, Germany, 8–10 September 2020, pp. 205–210. IEEE (2020)

    Google Scholar 

  3. Baró, A., Riba, P., Calvo-Zaragoza, J., Fornés, A.: From optical music recognition to handwritten music recognition: a baseline. Pattern Recogn. Lett. 123, 1–8 (2019)

    Article  Google Scholar 

  4. Calvo-Zaragoza, J., Jan, H., Jr., Pacha, A.: Understanding optical music recognition. ACM Comput. Surv. (CSUR) 53(4), 1–35 (2020)

    Article  Google Scholar 

  5. Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation: formulation, data and baseline results. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1081–1086. IEEE (2017)

    Google Scholar 

  6. Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation with convolutional recurrent neural networks. Pattern Recogn. Lett. 128, 115–121 (2019)

    Article  Google Scholar 

  7. Castellanos, F.J., Calvo-Zaragoza, J., Inesta, J.M.: A neural approach for full-page optical music recognition of mensural documents. In: Proceedings of the 21th International Society for Music Information Retrieval Conference, ISMIR, pp. 23–27 (2020)

    Google Scholar 

  8. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  9. Graves, A.: Supervised sequence labelling. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks, pp. 5–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_2

    Chapter  MATH  Google Scholar 

  10. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 369–376. ACM, New York (2006)

    Google Scholar 

  11. Jan, H., Jr., Kolárová, M., Pacha, A., Calvo-Zaragoza, J.: How current optical music recognition systems are becoming useful for digital libraries. In: Proceedings of the 5th International Conference on Digital Libraries for Musicology, pp. 57–61 (2018)

    Google Scholar 

  12. Journet, N., Visani, M., Mansencal, B., Van-Cuong, K., Billy, A.: Doccreator: a new software for creating synthetic ground-truthed document images. J. Imaging 3(4), 62 (2017)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, San Diego, USA (2015)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  16. Parada-Cabaleiro, E., Batliner, A., Schuller, B.W.: A diplomatic edition of il lauro secco: ground truth for OMR of white mensural notation. In: ISMIR, pp. 557–564 (2019)

    Google Scholar 

  17. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  18. Pugin, L.: The challenge of data in digital musicology. Front. Digital Humanit. 2, 4 (2015)

    Google Scholar 

  19. Rebelo, A., Capela, G., Cardoso, J.S.: Optical recognition of music symbols. Int. J. Doc. Anal. Recognit. (IJDAR) 13(1), 19–31 (2010)

    Article  Google Scholar 

  20. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017)

    Article  Google Scholar 

  21. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  22. Treitler, L.: The early history of music writing in the west. J. Am. Musicol. Soc. 35(2), 237–279 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Calvo-Zaragoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Gutiérrez, J.C., Valero-Mas, J.J., Castellanos, F.J., Calvo-Zaragoza, J. (2021). Data Augmentation for End-to-End Optical Music Recognition. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12916. Springer, Cham. https://doi.org/10.1007/978-3-030-86198-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86198-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86197-1

  • Online ISBN: 978-3-030-86198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics