Skip to main content

Automatic Evolutionary Settings of Machine Learning Methods for Buildings’ Thermal Loads Prediction

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

Due to climate change, buildings can consume 30% more energy by 2040, with energy performance being the critical element for achieving sustainable development in the civil construction sector. One way to solve this evaluation problem is by applying Machine Learning Methods that can assist specialists in civil construction in analyzing scenarios even in the initial phase of the project. The present work evaluates the application of the Elastic Net, Extreme Learning Machine, and Extreme Gradient Boosting models for the prediction of heating and cooling loads in residential buildings. The database used has 768 samples, with eight geometric input variables and two thermal output variables. Differential Evolution optimization algorithm was applied to select method parameters to find the sets of hyperparameters that reinforce the predictive capabilities of the models. The comparisons of the results occurred using the metrics MAE, MAPE, RMSE, and R\(^2\). The results showed that the Extreme Gradient Boosting method obtained a better performance among the tested methods than the literature, presenting the lowest values for the error metrics and significant differences in the statistical tests. Thus, combining Differential Evolution and Extreme Gradient Boosting methods, thermal loads can be predicted, assisting projects that aim at energy savings and sustainability

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Buildings 40(3), 394–398 (2008)

    Article  Google Scholar 

  2. Ministério de Minas e Energia do Brasil: Uso de ar condicionado no setor residencial brasileiro: Perspectivas e contribuições para o avanço em eficiência energética. Technical report (2018)

    Google Scholar 

  3. Boermans, T., Grözinger, J.: Economic effects of investing in EE in buildings - the beam2 model. Background paper for EC Workshop on Cohesion policy (2011)

    Google Scholar 

  4. Touzani, S., Granderson, J., Fernandes, S.: Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Buildings 158, 1533–1543 (2018)

    Article  Google Scholar 

  5. Wang, Z., Srinivasan, R.S., Shi, J.: Artificial intelligent models for improved prediction of residential space heating. J. Energy Eng. 142(4), 04016006 (2016)

    Article  Google Scholar 

  6. Jihad, A.S., Tahiri, M.: Forecasting the heating and cooling load of residential buildings by using a learning algorithm “gradient descent”, morocco. Case Stud. Thermal Eng. 12, 85–93 (2018)

    Google Scholar 

  7. Ascione, F., Bianco, N., Mauro, G.M., Napolitano, D.F.: Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. application to different italian climatic zones. Energy 174, 359–374 (2019)

    Google Scholar 

  8. AlFaris, F., Juaidi, A., Manzano-Agugliaro, F.: Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energy Buildings 153, 262–274 (2017)

    Article  Google Scholar 

  9. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings 49, 560–567 (2012)

    Article  Google Scholar 

  10. Chou, J.S., Bui, D.K.: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Buildings 82, 437–446 (2014)

    Article  Google Scholar 

  11. Duarte, G.R., Fonseca, L., Goliatt, P., Lemonge, A.: Comparison of machine learning techniques for predicting energy loads in buildings. Ambiente Construído 17(3), 103–115 (2017)

    Article  Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Article  Google Scholar 

  13. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  14. bin Huang, G., yu Zhu, Q., kheong Siew, C.: Extreme learning machine: a new learning scheme of feedforward neural networks, pp. 985–990 (2006)

    Google Scholar 

  15. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: A review. Neural Netw. 61, 32–48 (2015)

    Article  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, springer series in statistics (2009)

    Google Scholar 

  17. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Google Scholar 

  18. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manage. Syst. 11(3), 215–223 (2012)

    Google Scholar 

  21. Zhu, Q.Y., Qin, A., Suganthan, P., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)

    Article  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Cheng, M.Y., Cao, M.T.: Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. 22, 178–188 (2014)

    Article  Google Scholar 

  24. Castelli, M., Trujillo, L., Vanneschi, L., Popovič, A.: Prediction of energy performance of residential buildings: a genetic programming approach. Energy Buildings 102, 67–74 (2015)

    Article  Google Scholar 

  25. Goliatt, L., Capriles, P., Duarte, G.R.: Modeling heating and cooling loads in buildings using gaussian processes. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2018)

    Google Scholar 

  26. Goliatt, L., Capriles, P.V.Z., Goulart Tavares, G.: Gradient boosting ensembles for predicting heating and cooling loads in building design. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 495–506. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_42

    Chapter  Google Scholar 

  27. Al-Rakhami, M., Gumaei, A., Alsanad, A., Alamri, A., Hassan, M.M.: An ensemble learning approach for accurate energy load prediction in residential buildings. IEEE Access 7, 48328–48338 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Goulart Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goulart Tavares, G., Capriles, P.V.Z., Goliatt, L. (2021). Automatic Evolutionary Settings of Machine Learning Methods for Buildings’ Thermal Loads Prediction. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics