Skip to main content

Terrace Vineyards Detection from UAV Imagery Using Machine Learning: A Preliminary Approach

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12981))

Included in the following conference series:

  • 1881 Accesses

Abstract

Alto Douro Wine Region is located in the Northeast of Portugal and is classified by UNESCO as a World Heritage Site. Snaked by the Douro River, the region has been producing wines for over 2000 years, with the world-famous Porto wine standing out. The vineyards, in that region, are built in a territory marked by steep slopes and the almost inexistence of flat land and water. The vineyards that cover the great slopes rise from the Douro River and form an immense terraced staircase. All these ingredients combined make the right key for exploring precision agriculture techniques. In this study, a preliminary approach allowing to perform terrace vineyards identification is presented. This is a key-enabling task towards the achievement of important goals such as production estimation and multi-temporal crop evaluation. The proposed methodology consists in the use of Convolutional Neural Networks (CNNs) to classify and segment the terrace vineyards, considering a high-resolution dataset acquired with remote sensing sensors mounted in unmanned aerial vehicles (UAVs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gómez, M.I., Meemken, E., Verteramo Chiu, L.J.: Agricultural Value Chains and Social and Environmental Impacts: Trends, Challenges, and Policy Options – Background paper for The State of Agricultural Commodity Markets (SOCO) 2020. FAO, Rome (2020)

    Google Scholar 

  2. Instituto Nacional de Estatística - Recenseamento Agrícola. Análise dos principais resultados: 2019. INE, Lisboa (2021). https://www.ine.pt/xurl/pub/437178558. ISBN 978-989-25-0562-6

  3. Eager, J.: Opportunities of Artificial Intelligence, Study for the committee on Industry, Research and Energy, Policy Department for Economic, Scientific and Quality of Life Policies. European Parliament, Luxembourg (2020)

    Google Scholar 

  4. Sylvester, G.: E-agriculture in Action: Drones for Agriculture. Food and Agriculture Organization of the United Nations and International Telecommunication Union, Bangkok (2018)

    Google Scholar 

  5. Balafoutis, A., et al.: Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9, 1339 (2017)

    Article  Google Scholar 

  6. Pádua, L., et al.: Multi-temporal analysis of forestry and coastal environments using UASs. Remote Sens. 10(1), 24 (2018)

    Google Scholar 

  7. Pádua, L., et al.: UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int. J. Remote Sens. 38(8–10), 2349–2391 (2017)

    Article  Google Scholar 

  8. Tsouros, D.C., Bibi, S., Sarigiannidis, P.G.: A review on UAV-based applications for precision agriculture. Information 10(11), 349 (2019)

    Article  Google Scholar 

  9. Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., Landivar-Bowles, J.: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 70, 15–22 (2021)

    Article  Google Scholar 

  10. Asokan, A., Anitha, J.: Machine learning based image processing techniques for satellite image analysis -a survey. In: IEEE International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 1–6 (2019)

    Google Scholar 

  11. Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: a review. Sensors 18(8), 2674 (2018)

    Article  Google Scholar 

  12. Ponnusamy, V., Natarajan, S.: Precision agriculture using advanced technology of IoT, unmanned aerial vehicle, augmented reality, and machine learning. In: Gupta, D., Hugo C. de Albuquerque, V., Khanna, A., Mehta, P.L. (eds.) Smart Sensors for Industrial Internet of Things. IoT, pp. 207–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-52624-5_14

    Chapter  Google Scholar 

  13. Weiss, M., Jacob, F., Duveiller, G.: Remote sensing for agricultural applications: a meta-review. Remote Sens. Environ. 236, 111402 (2020)

    Article  Google Scholar 

  14. Adão, T., et al.: Hyperspectral imaging: a review on UAV-based sensors data processing and applications for agriculture and forestry. Remote Sens. 9(11), 1110 (2017)

    Article  Google Scholar 

  15. Daponte, P., et al.: A review on the use of drones for precision agriculture. In: IOP Conference Series: Earth and Environmental Science, vol. 275, p. 012022 (2019)

    Google Scholar 

  16. Hassler, S.C., Baysal-Gurel, F.: Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy 9(10), 618 (2019)

    Article  Google Scholar 

  17. Guimarães, N., Pádua, L., Marques, P., Silva, N., Peres, E., Sousa, J.J.: Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities. Remote Sens. 12(6), 1046 (2020)

    Article  Google Scholar 

  18. Mavridou, E., Vrochidou, E., Papakostas, G., Pachidis, T., Kaburlasos, V.: Machine vision systems in precision agriculture for crop farming. J. Imaging 5(12), 89 (2019)

    Article  Google Scholar 

  19. Abdullahi, H., Sheriff, R., Mahieddine, F.: Convolution neural network in precision agriculture for plant image recognition and classification. In: INTECH 2017, pp. 1–3 (2017)

    Google Scholar 

  20. Gutiérrez, S., Fernández-Novales, J., Diago, M.P., Tardaguila, J.: On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties. Front. Plant Sci. 9, 1102 (2018)

    Article  Google Scholar 

  21. Rumpf, T., Mahlein, A., Steiner, U., Oerke, E., Dehne, H., Plumer, L.: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 74(1), 91–99 (2010)

    Article  Google Scholar 

  22. Pádua, L., et al.: Vineyard variability analysis through UAV-based vigour maps to assess climate change impacts. Agronomy 9(10), 581 (2019)

    Article  Google Scholar 

  23. Musci, M.A., Persello, C., Lingua, A.M.: UAV images and deep-learning algorithms for detecting flavescence doree disease in grapevine orchards. ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3, 1483–1489 (2020)

    Google Scholar 

  24. Jones, E.G., Wong, S., Milton, A., Sclauzero, J., Whittenbury, H., McDonnell, M.D.: The impact of pan-sharpening and spectral resolution on vineyard segmentation through machine learning. Remote Sens. 12(6), 934 (2020)

    Article  Google Scholar 

  25. Ballesteros, R., Intrigliolo, D.S., Ortega, J.F., Ramírez-Cuesta, J.M., Buesa, I., Moreno, M.A.: Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precision Agric. 21(6), 1242–1262 (2020)

    Article  Google Scholar 

  26. Aghi, D., Mazzia, V., Chiaberge, M.: Local motion planner for autonomous navigation in vineyards with a RGB-D camera-based algorithm and deep learning synergy. Machines 8(2), 27 (2020)

    Article  Google Scholar 

  27. Franczyk, B., et al.: Deep learning for grape variety recognition. Procedia Comp. Sci. 176, 1211–1220 (2020)

    Article  Google Scholar 

  28. Adão, T., et al.: A pilot digital image processing approach for detecting vineyard parcels in Douro region through high resolution aerial imagery. In: Proceedings of the International Conference on Geoinformatics and Data Analysis - ICGDA 18 (2018)

    Google Scholar 

  29. Pádua, L., et al.: Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Comp. Sci. 121, 407–414 (2017)

    Article  Google Scholar 

  30. Santos, L., Santos, F.N., Filipe, V., Shinde, P.: Vineyard segmentation from satellite imagery using machine learning. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 109–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_10

    Chapter  Google Scholar 

  31. Gay, P., Comba, L., Primicerio, J., Ricauda Aimonino, D.: Vineyard detection from unmanned aerial systems images. Comput. Electron. Agric. 114, 78–87 (2015)

    Article  Google Scholar 

  32. Santos, L., et al.: Path planning aware of soil compaction for steep slope vineyards. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 250–255, Torres Vedras (2018)

    Google Scholar 

  33. Zheng, Y., Kong, J., Jin, X., Wang, X., Zuo, M.: CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)

    Article  Google Scholar 

  34. Azlah, M.A.F., Chua, L.S., Rahmad, F.R., Abdullah, F.I., Wan Alwi, S.R.: Review on techniques for plant leaf classification and recognition. Computers 8(4), 77 (2019)

    Article  Google Scholar 

  35. Koirala, A., Walsh, K.B., Wang, Z., Mccarthy, C.: Deep learning – method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 162, 219–234 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Figueiredo, N., Pádua, L., Sousa, J.J., Sousa, A. (2021). Terrace Vineyards Detection from UAV Imagery Using Machine Learning: A Preliminary Approach. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics