Skip to main content

A Reputation Score Proposal for Online Video Platforms

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

Boosting the engagement of users and content creators is of critical importance for online video platforms. The success of an online platform can be defined by the number of active users and the amount of time they spend on it, as they will probably take the best advantage of all the available functionalities and spread the word about it. The goal of this research is to propose effective algorithms to create a reputation system capable of generating trust among users and increasing engagement. The algorithm rewards users and content creators for their actions, in addition to motivating them through considerable increases in their reputation during their initial iterations with the platform. The growth is modelled by three basic reputation functions: exponential, logarithmic and lineal mappings. The Noixion TV platform has been used to develop the use case and its data has been gathered to analyse the behaviour of the proposed system.

This research has been supported by the project “Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGE-Mobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security”, Reference: RTI2018-095390-B-C32, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI) and the European Regional Development Fund (FEDER). The research was partially supported by the project “Computación cuántica, virtualización de red, edge computing y registro distribuido para la inteligencia artificial del futuro”, Reference: CCTT3/20/SA/0001, financed by Institute for Business Competitiveness of Castilla y León, and the European Regional Development Fund (FEDER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Digital 2021: Global Overview Report—DataReportal–Global Digital Insights (2021). Retrieved 6 April 2021 from https://datareportal.com/reports/digital-2021-global-overview-report

  2. Corchado, J.M., et al.: Deepint.net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021)

    Article  Google Scholar 

  3. García-Retuerta, D., Rivas, A., Guisado-Gámez, J., Antoniou, E., Chamoso, P.: Reputation system for increased engagement in public transport oriented-applications. Electronics 10(9), 1070 (2021)

    Google Scholar 

  4. Wang, Y.D., Emurian, H.H.: An overview of online trust: concepts, elements, and implications. Comput. Hum. Behav. 21(1), 105–125 (2005)

    Article  Google Scholar 

  5. Manchala, D.W.: E-commerce trust metrics and models. IEEE Internet Comput. 4(2), 36–44 (2000)

    Article  Google Scholar 

  6. Seidel, M.D.L.: Questioning centralized organizations in a time of distributed trust. J. Manag. Inquiry 27(1), 40–44 (2018)

    Article  Google Scholar 

  7. Busom, N., Petrlic, R., Sebé, F., Sorge, C., Valls, M.: A privacy-preserving reputation system with user rewards. J. Netw. Comput. Appl. 80, 58–66 (2017)

    Article  Google Scholar 

  8. García-Retuerta, D., Rivas, A., Guisado-Gámez, J., Antoniou, E., Chamoso, P.: Reputation algorithm for users and activities in a public transport oriented application. In: Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P. (eds.) ISAmI 2020. AISC, vol. 1239, pp. 213–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58356-9_21

    Chapter  Google Scholar 

  9. Kerschbaum, F., Haller, J., Karabulut, Y., Robinson, P.: PathTrust: a trust-based reputation service for virtual organization formation. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 193–205. Springer, Heidelberg (2006). https://doi.org/10.1007/11755593_15

    Chapter  Google Scholar 

  10. Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: empirical analysis of eBay’s reputation system. In: The Economics of the Internet and E-commerce. Emerald Group Publishing Limited (2002)

    Google Scholar 

  11. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Stanford InfoLab (1999)

    Google Scholar 

  12. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust algorithm for reputation management in P2P networks. In: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651 (2003)

    Google Scholar 

  13. Kurdi, H.A.: HonestPeer: an enhanced EigenTrust algorithm for reputation management in P2P systems. J. King Saud Univ. Comput. Inf. Sci. 27(3), 315–322 (2015)

    Google Scholar 

  14. Garda, M.B., Karhulahti, V.M.: Let’s Play Tinder! aesthetics of a dating app. Games Cult. 16(2), 248–261 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garcia-Retuerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Retuerta, D., Casado-Vara, R., Valdeolmillos, D., Corchado, J.M. (2021). A Reputation Score Proposal for Online Video Platforms. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics