Skip to main content

The DeepONets for Finance: An Approach to Calibrate the Heston Model

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

The Heston model is the most renowned stochastic volatility function in finance, but the calibration input parameters is a challenging task. This contest grows up because the instantaneous volatility is unobservable or market quotes are absent/unviable to agents, remaining the asset time-series as tangible. Moreover, these conditions are unfit to approach based on Maximum Likelihood Estimation or optimisation of the differences in Pricing models and quotes in the real market. Today, neural networks are a well-known tool with malleable and powerful features to map accurately any nonlinear continuous operator in complex systems. This work adopts the deep operator networks (DeepONets) to learn the Heston parameters based on observed time series. We perform simulations of trajectories following the Heston model with a truncated Euler discretization scheme and randomised inputs parameters. The five parameters are estimated by Stacked and Unstacked DeepONets and compared with GJR-GARCH and standard neural network with the Tukeys’ test. The results indicated the improvement in accuracy of the Unstacked model. However, the statistical test indicates some similarity between the Unstacked model and standard neural network.

Supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Fundação de Amparo à Pesquisa do Estado de Minas Gerais-FAPEMIG (grant TEC-APQ-00334/18) and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (grant 429639/2016-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem of parameter estimation for stochastic processes is not limited to the Heston model. This gap is shown in [21] with exemplification for interest rates.

  2. 2.

    See [7, Chapter 6.4.1].

  3. 3.

    See [11][Chapter 15, Sect. 11] for more details about implied volatilities.

  4. 4.

    The GJR-GARCH model also captures the stylised facts in finance, like the GARCH model, but appends the relation between negative shocks returns at last observation as positive shocks. This asymmetry is known as the leverage effect.

  5. 5.

    CIR is a short-form of Cox, Ingersoll, and Ross (the original authors), see [6, Chapter 2, pg. 15].

  6. 6.

    Mrázek and Pospíšil [23] describes some discretization and truncation schemes with richness of details.

  7. 7.

    These interval was choice to comprise the values observed in literature. However, the plenty combinations of parameters are feasible depending of the market considered.

  8. 8.

    The price time-series is convert in return time-series, it is a common procedure in finance and can be interpreted as the standardisation step.

  9. 9.

    Linear activation was considered in output node to \(\alpha \) and \(\rho \). The values inside brackets indicate the number of neurons in each layer. Other topologies were tested, but without significant gain.

  10. 10.

    A Python library designed for scientific machine learning (https://github.com/lululxvi/deepxde).

References

  1. Barandas, M., et al: Tsfel: Time series feature extraction library. SoftwareX 11, 100456 (2020). https://doi.org/10.1016/j.softx.2020.100456

  2. Cai, S., Wang, Z., Lu, L., Zaki, T.A., Karniadakis, G.E.: Deepm&mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J. Comput. Phys. 436, 110296 (2021). https://doi.org/10.1016/j.jcp.2021.110296

  3. Cape, J., Dearden, W., Gamber, W., Liebner, J., Lu, Q., Nguyen, M.L.: Estimating heston’s and bates’ models parameters using Markov chain monte carlo simulation. J. Stat. Comput. Simul. 85(11), 2295–2314 (2015). https://doi.org/10.1080/00949655.2014.926899

    Article  MathSciNet  MATH  Google Scholar 

  4. Engle, R.F., Lee, G.G.J.: Estimating diffusion models of stochastic volatility. In: Rossi, P. (ed.) MODELLING STOCK MARKET VOLATILITY: Bridging the Gap to Continuous Time, vol. 1, chap. 11, pp. 333–355. Academic Press Inc, 525 B Street, Suite 1900, San Diego, California 92101–4495, USA (1996)

    Google Scholar 

  5. Gallant, A.R., Tauchen, G.: Which moments to match? Econometric Theor. 12(4), 657–681 (1996). https://doi.org/10.1017/S0266466600006976

    Article  MathSciNet  Google Scholar 

  6. Gatheral, J.: The volatility surface : a practitioner’s guide. Wiley (2012). https://doi.org/10.1002/9781119202073

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation and Machine Learning Series. MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  8. Gourieroux, C., Monfort, A., Renault, E.: Indirect inference. J. Appl. Econ. 8, S85–S118 (1993). http://www.jstor.org/stable/2285076

  9. Hernandez, A.: Model calibration with neural networks (2015). https://doi.org/10.2139/ssrn.2812140

  10. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6(2), 327–343 (2015). https://doi.org/10.1093/rfs/6.2.327

  11. Hull, J.: Options, Futures, and Other Derivatives. 10th edn, Pearson Prentice Hall, Upper Saddle River (2017)

    Google Scholar 

  12. Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994). http://www.jstor.org/stable/1392199

  13. Kloeden, P.E., Platen, E.P.: Stochastic Modelling and Applied Probability, Applications of Mathematics, 2 edn. vol. 1. Springer, Berlin (1992)

    Google Scholar 

  14. Lewis, A.L.: Option Valuation Under Stochastic Volatility: With Mathematica Code, chap. Appendix 1.1 - Parameter Estimators for the GARCH Diffusion Model. Finance Press, Newport Beach, California, USA (2000)

    Google Scholar 

  15. Liu, S., Borovykh, A., Grzelak, L.A., Oosterlee, C.W.: A neural network-based framework for financial model calibration. J. Math. Ind. 9(1), 9 (2019). https://doi.org/10.1186/s13362-019-0066-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, L., Jin, P., Karniadakis, G.E.: Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators (2020). https://arxiv.org/abs/1910.03193

  17. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature Mach. Intell. 3(3), 218–229 (2021). https://doi.org/10.1038/s42256-021-00302-5

    Article  Google Scholar 

  18. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021). https://doi.org/10.1137/19M1274067

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao, Z., Lu, L., Marxen, O., Zaki, T.A., Karniadakis, G.E.: Deepm & mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators (2020). https://arxiv.org/abs/2011.03349

  20. Márkus, L., Kumar, A.: Modelling joint behaviour of asset prices using stochastic correlation. Method. Comput. Appl. Probab. 23(1), 341–354 (2021). https://doi.org/10.1007/s11009-020-09838-2

    Article  MathSciNet  Google Scholar 

  21. Monsalve-Cobis, A., González-Manteiga, W., Febrero-Bande, M.: Goodness-of-fit test for interest rate models: an approach based on empirical processes. Comput. Stat. Data Anal. 55(12), 3073–3092 (2011). https://doi.org/10.1016/j.csda.2011.06.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Moysiadis, G., Anagnostou, I., Kandhai, D.: Calibrating the mean-reversion parameter in the hull-white model using neural networks. In: Alzate, C., et al. (eds.) MIDAS/PAP-2018. LNCS (LNAI), vol. 11054, pp. 23–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13463-1_2

    Chapter  Google Scholar 

  23. Mrázek, M., Pospíšil, J.: Calibration and simulation of heston model. Open Math. 15(1), 679–704 (2017). https://doi.org/10.1515/math-2017-0058

    Article  MathSciNet  MATH  Google Scholar 

  24. Rouah, F.D.: The Heston model and its extensions in Matlab and C#, Wiley finance series, 1 edn, vol. 1. Wiley, Hoboken (2013)

    Google Scholar 

  25. Tang, C.Y., Chen, S.X.: Parameter estimation and bias correction for diffusion processes. J. Econ. 149(1), 65–81 (2009). https://doi.org/10.1016/j.jeconom.2008.11.001

    Article  MathSciNet  MATH  Google Scholar 

  26. Tomas, M.: Pricing and calibration of stochastic models via neural networks. Master’s thesis, Department of Mathematics, Imperial College London (2018). https://www.imperial.ac.uk/media/imperial-college/faculty-of-natural-sciences/department-of-mathematics/math-finance/TOMAS_MEHDI_01390785.pdf

  27. Wang, X., He, X., Bao, Y., Zhao, Y.: Parameter estimates of heston stochastic volatility model with mle and consistent ekf algorithm. Sci. China Inf. Sci. 61(4), 042202 (2018). https://doi.org/10.1007/s11432-017-9215-8

  28. Xie, Z., Kulasiri, D., Samarasinghe, S., Rajanayaka, C.: The estimation of parameters for stochastic differential equations using neural networks. Inverse Prob. Sci. Eng. 15(6), 629–641 (2007). https://doi.org/10.1080/17415970600907429

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Michel Santos Leite or Leonardo Goliatt da Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leite, I.M.S., Yamim, J.D.M., da Fonseca, L.G. (2021). The DeepONets for Finance: An Approach to Calibrate the Heston Model. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics