Skip to main content

A Data-Driven Simulator for Assessing Decision-Making in Soccer

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

Decision-making is one of the crucial factors in soccer (association football). The current focus is on analyzing data sets rather than posing “what if” questions about the game. We propose simulation-based methods that allow us to answer these questions. To avoid simulating complex human physics and ball interactions, we use data to build machine learning models that form the basis of an event-based soccer simulator. This simulator is compatible with the OpenAI GYM API. We introduce tools that allow us to explore and gather insights about soccer, like (1) calculating the risk/reward ratios for sequences of actions, (2) manually defining playing criteria, and (3) discovering strategies through Reinforcement Learning.

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ea.com/games/fifa.

  2. 2.

    konami.com/wepes.

  3. 3.

    footballmanager.com.

  4. 4.

    github.com/nvsclub/SoccerActionsSim.

References

  1. Abreu, M., Rossetti, R.J.F., Reis, L.P.: XSS: a soccer server extension for automated learning of high-level robotic soccer strategies. In: 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (2019). https://doi.org/10.1109/ICARSC.2019.8733635

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330701

  3. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. In: arXiv (2019)

    Google Scholar 

  4. Decroos, T., Bransen, L., Van Haaren, J., Davis, J.: Actions speak louder than goals: valuing player actions in soccer. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330758

  5. Fernández, J., Bornn, L., Cervone, D.: A framework for the fine-grained evaluation of the instantaneous expected value of soccer possessions. Machine Learning (2021)

    Google Scholar 

  6. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, 10–15 Jul 2018, vol. 80, pp. 1587–1596. PMLR (2018)

    Google Scholar 

  7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  8. Heinrich, J., Silver, D.: Deep reinforcement learning from self-play in imperfect-information games. In: arXiv (2016)

    Google Scholar 

  9. Kaggle: Google research football with Manchester City f.c. https://www.kaggle.com/c/google-football/overview

  10. Kharrat, T., McHale, I.G., Peña, J.L.: Plus–minus player ratings for soccer. Eur. J. Oper. Res. 283(2), 726–736 (2020). https://doi.org/10.1016/j.ejor.2019.11.026

  11. Kurach, K., et al.: Google research football: a novel reinforcement learning environment (2020)

    Google Scholar 

  12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv (2019)

    Google Scholar 

  13. Mnih, V., Kavukcuoglu, K., Silver, D.: Human-level control through deep reinforcement learning. Nature (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  14. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv (2013)

    Google Scholar 

  15. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1928–1937. PMLR, New York (2016). http://proceedings.mlr.press/v48/mniha16.html

  16. Noda, I., Suzuki, S., Matsubara, H., Asada, M., Kitano, H.: Robocup-97: the first robot world cup soccer games and conferences. AI Mag. 19(3), 49 (1998)

    Google Scholar 

  17. OpenAI: Openai five. openai.com/projects/five/ Accessed 6 Jan 2021

    Google Scholar 

  18. Pollard, R., Ensum, J., Taylor, S.: Estimating the probability of a shot resulting in a goal: the effects of distance, angle and space. Int. J. Soccer Sci. 2, 50–55 (2004)

    Google Scholar 

  19. Rossi, A., Pappalardo, L., Cintia, P., Iaia, F.M., Fernàndez, J., Medina, D.: Effective injury forecasting in soccer with GPS training data and machine learning. PLOS ONE 13(7), 1–15 (2018). https://doi.org/10.1371/journal.pone.0201264

  20. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a learned model. In: arXiv (2016)

    Google Scholar 

  21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR http://arxiv.org/abs/1707.06347 (2017)

  22. Silver, D., Hubert, T., Schrittwieser, J.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. In: Nature (2017)

    Google Scholar 

  23. Silver, D., Schrittwieser, J., Simonyan, K.: Mastering the game of go without human knowledge. Nature (2017). https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  24. Vinyals, O., et al.: Starcraft ii: A new challenge for reinforcement learning. In: arXiv (2017)

    Google Scholar 

  25. Vinyals, O., Babuschkin, I., Czarnecki, W.: Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature (2019). https://doi.org/10.1038/s41586-019-1724-z

    Article  Google Scholar 

  26. Warnakulasuriya, T., Wei, X., Fookes, C., Sridharan, S., Lucey, P.: Discovering methods of scoring in soccer using tracking data. KDD (2015). https://doi.org/10.1038/s41586-019-1724-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Mendes-Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes-Neves, T., Mendes-Moreira, J., Rossetti, R.J.F. (2021). A Data-Driven Simulator for Assessing Decision-Making in Soccer. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics