Skip to main content

Classification of Burrs Using Contour Features of Image in Milling Workpieces

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2021)

Abstract

Fulfilment of quality standards in manufacturing processes is an essential task and often increases production costs. Specifically, the appropriate edge finishing of machine workpieces is one of the requirements so as to avoid the presence of burrs. In this paper, a vision-based system that employs contour features is proposed to detect and classify images of edge workpieces. In the first stage, we locate the region of the image that contains the edge of the part and in the second one, more precised operations provide detailed information in order to detect the edge type of the machined part. Calculated feature vector feeds supervised classifiers to determine the best approach to this dataset. Random Forest Classifier yields the best results obtaining a 90% of precision, recall and F1-score in the test dataset, which satisfies the experts demand to these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurich, J., Dornfeld, D., Arrazola, P., Franke, V., Leitz, L., Min, S.: Burrs-analysis, control and removal. CIRP Ann. Manuf. Technol. 58(2), 519–542 (2009). https://doi.org/10.1016/j.cirp.2009.09.004

    Article  Google Scholar 

  2. Balázs, B.Z., Takács, M.: Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel. Int. J. Adv. Manuf. Technol. 5289–5305 (2020). https://doi.org/10.1007/s00170-020-04991-x

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. On Line 1, 208–212 (2011)

    Article  Google Scholar 

  5. del Castillo, V.R., Sánchez-González, L., Fernández-Robles, L., Castejón-Limas, M.: Burr detection using image processing in milling workpieces. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 751–759. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_72

    Chapter  Google Scholar 

  6. Chen, X., Shi, G., Xi, C., Zhong, L., Wei, X., Zhang, K.: Design of burr detection based on image processing. In: Journal of Physics: Conference Series, vol. 1237, vol. 032075, June 2019. https://doi.org/10.1088/1742-6596/1237/3/032075

  7. Claes, K., Koninckx, T., Bruyninckx, H.: Automatic burr detection on surfaces of revolution based on adaptive 3D scanning. In: Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM 2005), pp. 212–219 (2005). https://doi.org/10.1109/3DIM.2005.21

  8. Dornfeld, D., Min, S.: A review of burr formation in machining. In: Aurich, J., Dornfeld, D. (eds.) Burrs - Analysis, Control and Removal, pp. 3–11. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-00568-8_1

    Chapter  Google Scholar 

  9. Ferreiro, S., Sierra, B., Irigoien, I., Gorritxategi, E.: Data mining for quality control: burr detection in the drilling process. Comput. Ind. Eng. 60(4), 801–810 (2011). https://doi.org/10.1016/j.cie.2011.01.018

    Article  Google Scholar 

  10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, K.C., Huang, H.P., Lu, S.S.: Burr detection by using vision image. Int. J. Adv Manuf. Technol. 8(5), 275–284 (1993). https://doi.org/10.1007/BF01783611

    Article  Google Scholar 

  13. Lin, T.R.: Experimental study of burr formation and tool chipping in the face milling of stainless steel. J. Mater. Process. Technol. 108(1), 12–20 (2000). https://doi.org/10.1016/S0924-0136(00)00573-2

    Article  Google Scholar 

  14. Pilný, L., De Chiffre, L., Píška, M., Villumsen, M.F.: Hole quality and burr reduction in drilling aluminium sheets. CIRP J. Manuf. Sci. Technol. 5(2), 102–107 (2012)

    Article  Google Scholar 

  15. Riego, V., Sánchez, L., Álvarez, C.: Github - Burr contour features. https://github.com/ULE-Informatica/burr_contour_features

  16. Su, J., Huang, C., Tarng, Y.: An automated flank wear measurement of microdrills using machine vision. J. Mater. Process. Technol. 180(1–3), 328–335 (2006). https://doi.org/10.1016/j.jmatprotec.2006.07.001

    Article  Google Scholar 

  17. Suzuki, S., Be, K.: Topological structural analysis of digitized binary images by border following. Comput. Visi. Graph. Image Process. 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7

    Article  MATH  Google Scholar 

  18. The International Organization for Standardization: ISO 13715:2017(EN), Technical product documentation—Edges of undefined shape—Indication and dimensioning (2017)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Spanish Ministry of Economy, Industry and Competitiveness, through grant PID2019-108277GB-C21. Virginia Riego would like to thank Universidad de León for its funding support for her doctoral studies. Claudia Álvarez would like to thank the regional Government of Castilla y León for its funding support under the grant BDNS (487971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sánchez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riego del Castillo, V., Sánchez-González, L., Álvarez-Aparicio, C. (2021). Classification of Burrs Using Contour Features of Image in Milling Workpieces. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics