Skip to main content

Applying Vector Symbolic Architecture and Semiotic Approach to Visual Dialog

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12886))

Included in the following conference series:

Abstract

The multi-modal tasks have started to play a significant role in the research on Artificial Intelligence. A particular example of that domain is visual-linguistic tasks, such as Visual Question Answering and its extension, Visual Dialog. In this paper, we concentrate on the Visual Dialog task and dataset. The task involves two agents. The first agent does not see an image and asks questions about the image content. The second agent sees this image and answers questions. The symbol grounding problem, or how symbols obtain their meanings, plays a crucial role in such tasks. We approach that problem from the semiotic point of view and propose the Vector Semiotic Architecture for Visual Dialog. The Vector Semiotic Architecture is a combination of the Sign-Based World Model and Vector Symbolic Architecture. The Sign-Based World Model represents agent knowledge on the high level of abstraction and allows uniform representation of different aspects of knowledge, forming a hierarchical representation of that knowledge in the form of a special kind of semantic network. The Vector Symbolic Architecture represents the computational level and allows to operate with symbols as with numerical vectors using simple element-wise operations. That combination enables grounding object representation from any level of abstraction to the sensory agent input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/huggingface/neuralcoref.

  2. 2.

    https://docs.allennlp.org/models.

  3. 3.

    https://spacy.io.

References

  1. Agrawal, A., et al.: VQA: visual question answering. arXiv e-prints arXiv:1505.00468 (2015)

  2. Bartlett, F.C.: Remembering: a study in experimental and social psychology. Philosophy 8(31), 374–376 (1932)

    Google Scholar 

  3. Bernstein, A.N.: On dexterity and its development. Publishing House “Physical Culture and Sport", Moscow (1991). (in Russian)

    Google Scholar 

  4. Besold, T.R., Kühnberger, K.U.: Towards integrated neural - symbolic systems for human-level AI: two research programs helping to bridge the gaps. Biol. Inspir. Cogn. Architect. 14, 97–110 (2015)

    Google Scholar 

  5. Chomskaya, E.D.: Neuropsychology, 4th edn. Peter (2005). (in Russian)

    Google Scholar 

  6. Das, A., et al.: Visual dialog. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Gibson, J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  8. Gorodetskiy, A., Shlychkova, A., Panov, A.I.: Delta schema network in model-based reinforcement learning. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 172–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_18

    Chapter  Google Scholar 

  9. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, pp. 5351–5359 (2019)

    Google Scholar 

  10. Harnad, S.: The symbol grounding problem. Physica D 42(1), 335–346 (1990)

    Article  Google Scholar 

  11. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: CVPR (2017)

    Google Scholar 

  12. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2019)

    Article  Google Scholar 

  13. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009). https://doi.org/10.1007/s12559-009-9009-8

    Article  Google Scholar 

  14. Kiselev, G., Kovalev, A., Panov, A.I.: Spatial reasoning and planning in sign-based world model. In: Kuznetsov, S.O., Osipov, G.S., Stefanuk, V.L. (eds.) RCAI 2018. CCIS, vol. 934, pp. 1–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00617-4_1

    Chapter  Google Scholar 

  15. Kiselev, G.A., Panov, A.I.: Synthesis of the behavior plan for group of robots with sign based world model. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_10

    Chapter  Google Scholar 

  16. Kovalev, A.K., Panov, A.I.: Mental actions and modelling of reasoning in semiotic approach to AGI. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 121–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_12

    Chapter  Google Scholar 

  17. Kovalev, A.K., Panov, A.I., Osipov, E.: Hyperdimensional representations in semiotic approach to AGI. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_24

    Chapter  Google Scholar 

  18. Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-to-fine inference. In: NAACL-HLT (2018)

    Google Scholar 

  19. Leontiev, A.N.: Psychology of the image [in russian]. Vestn. Mosk. un-ta. Ser. 14, Psychology, no. 2, pp. 3–13 (1979)

    Google Scholar 

  20. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Neisser, U.: Cognition and Reality: Principles and Implications of Cognitive Psychology. W. H Freeman and Company, New York (1976)

    Google Scholar 

  22. Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. I. World model and goal setting. J. Comput. Syst. Sci. Int. 53(4), 517–529 (2014)

    Article  MathSciNet  Google Scholar 

  23. Osipov, G.S.: Signs-based vs. symbolic models. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27060-9_1

    Chapter  Google Scholar 

  24. Panov, A.I.: Goal setting and behavior planning for cognitive agents. Sci. Tech. Inf. Process. 46(6), 404–415 (2019)

    Article  Google Scholar 

  25. Piaget, J.: Les mécanismes perceptifs. Presses universitaires de France, Paris (1961). (in French)

    Google Scholar 

  26. Poddyakov, N.N.: Features of Mental Development of Preschool Children. Professional Education Publishing House, Moscow (1996). [in Russian]

    Google Scholar 

  27. Shapoval, A.V.: Description of the image structure in modern art criticism analysis. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk 13(2), 240–246 (2011). (in Russian)

    Google Scholar 

  28. Velichkovsky, B.M.: Cognitive science: fundamentals of the psychology of cognition. In: 2 volumes. Smysl/Akademiya, Moscow (2006). (in Russian)

    Google Scholar 

  29. Vygotsky, L.: Collected works in 6 volumes, vol. 3. Pedagogika, Moscow (1983). (in Russian)

    Google Scholar 

  30. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (2004). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  31. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. arXiv e-prints arXiv:1810.02338 (2018)

  32. Zaporozhets, A.V., Lisina, M.I.: Development of Perception in Early and Preschool Childhood. Prosveshchenie Publishing House, Moscow (1966). (in Russian)

    Google Scholar 

  33. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. CoRR abs/1811.10830 (2018)

    Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, research Projects No. 19-37-90164 and 18-29-22027.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovalev, A.K., Shaban, M., Chuganskaya, A.A., Panov, A.I. (2021). Applying Vector Symbolic Architecture and Semiotic Approach to Visual Dialog. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics