Skip to main content

Algorithms Air Quality Estimation: A Comparative Study of Stochastic and Heuristic Predictive Models

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2021)

Abstract

This paper presents a comparative analysis of predictive models applied to air quality estimation. Currently, among other global issues, there is a high concern about air pollution, for this reason, there are several air quality indicators, with carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) being the main ones. When the concentration level of an indicator exceeds an established air quality safety threshold, it is considered harmful to human health, therefore, in cities like London, there are monitoring systems for air pollutants. This study aims to compare the efficiency of stochastic and heuristic predictive models for forecasting ozone (O3) concentration to estimate London's air quality by analyzing an open dataset retrieved from the London Datastore portal. Models based on data analysis have been widely used in air quality forecasting. This paper develops four predictive models (autoregressive integrated moving average - ARIMA, support vector regression - SVR, neural networks (specifically, long-short term memory - LSTM) and Facebook Prophet). Experimentally, ARIMA models and LSTM are proved to reach the highest accuracy in predicting the concentration of air pollutants among the considered models. As a result, the comparative analysis of the loss function (root-mean-square error) reveled that ARIMA and LSTM are the most suitable, accomplishing a low error rate of 0.18 and 0.20, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rybarczyk, Y., Zalakeviciute, R.: Machine learning approaches for outdoor air quality modelling: a systematic review. Appl. Sci. 8, 2570 (2018). https://doi.org/10.3390/app8122570

    Article  Google Scholar 

  2. Hood, C., et al.: Air quality simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys. 18, 11221–11245 (2018). https://doi.org/10.5194/acp-18-11221-2018

    Article  Google Scholar 

  3. Gaitán, M., Cancino, J., Eduardo, B.: Análisis del estado de la calidad del aire en Bogotá. Rev. Ing. Unknown, 81–92 (2007). https://doi.org/10.16924/riua.v0i26.299

  4. Silva, C., Alvarado, S., Montaño, R., Pérez, P.: Modelamiento de la contaminación atmosférica por particulas: Comparación de cuatro procedimientos predictivos en Santiago, Chile, pp. 113–127 (2003)

    Google Scholar 

  5. Gil-Alana, L.A., Yaya, O.S., Carmona-González, N.: Air quality in London: evidence of persistence, seasonality and trends. Theoret. Appl. Climatol. 142(1–2), 103–115 (2020). https://doi.org/10.1007/s00704-020-03305-1

    Article  Google Scholar 

  6. Yadav, M., Jain, S., Seeja, K.R.: Prediction of air quality using time series data mining. In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications, pp. 13–20. Springer, Singapore (2019)

    Chapter  Google Scholar 

  7. Lorente-Leyva, L.L., Alemany, M.M.E., Peluffo-Ordóñez, D.H., Herrera-Granda, I.D.: A Comparison of machine learning and classical demand forecasting methods: a case study of Ecuadorian textile industry. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 131–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64580-9_11

    Chapter  Google Scholar 

  8. Brownlee, J.: Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras, https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/. Accessed 17 May 2020

  9. Li, X., et al.: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 231, 997–1004 (2017). https://doi.org/10.1016/j.envpol.2017.08.114

    Article  Google Scholar 

  10. Ma, J., Cheng, J.C.P., Lin, C., Tan, Y., Zhang, J.: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 214, 116885 (2019). https://doi.org/10.1016/j.atmosenv.2019.116885

    Article  Google Scholar 

  11. Siami-Namini, S., Tavakoli, N., Siami Namin, A.: A Comparison of ARIMA and LSTM in forecasting time series. In: Proceedings of 17th IEEE International Conference on Machine Learning Applications, pp. 1394–1401, ICMLA 2018 (2019). https://doi.org/10.1109/ICMLA.2018.00227

  12. Riofrío, J., Chang, O., Revelo-Fuelagán, E.J., Peluffo-Ordóñez, D.H.: Forecasting the consumer price index (CPI) of Ecuador: a comparative study of predictive models. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1078–1084 (2020). https://doi.org/10.18517/ijaseit.10.3.10813

    Article  Google Scholar 

  13. Al-Musaylh, M.S., Deo, R.C., Adamowski, J.F., Li, Y.: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland. Australia. Adv. Eng. Inform. 35, 1–16 (2018)

    Article  Google Scholar 

  14. Rani Patra, S.: Time series forecasting of air pollutant concentration levels using machine learning. Time Ser. Anal. 4, 280–284 (2017)

    Google Scholar 

  15. López, J.: Análisis de Series deTiempo Pronóstico de demanda de uso de aeropuertos en Argentina al 2022, (2018). https://doi.org/10.3726/978-3-0352-0094-2/1.

  16. Raimundo, M.S., Okamoto, J.: SVR-wavelet adaptive model for forecasting financial time series. In: 2018 International Conference Information and Computing Technology, pp. 111–114, ICICT 2018 (2018). https://doi.org/10.1109/INFOCT.2018.8356851.

  17. Aghelpour, P., Mohammadi, B., Biazar, S.M.: Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoret. Appl. Climatol. 138(3–4), 1471–1480 (2019). https://doi.org/10.1007/s00704-019-02905-w

    Article  Google Scholar 

  18. Awad, M., Khanna, R.: Support vector regression. In: Awad, M., Khanna, R. (eds.) Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, pp. 67–80. Apress, Berkeley, CA (2015). https://doi.org/10.1007/978-1-4302-5990-9_4

    Chapter  Google Scholar 

  19. Hermiyanty, H., Wandira Ayu, B., Sinta, D.: Predicción de sistemas caóticos con redes neuronales: un estudio comparativo de los modelos de perceptrón multicapa y funciones de base radial. J. Chem. Inf. Model. 8, 1–58 (2017). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  20. Freeman, B.S., Taylor, G., Gharabaghi, B., Thé, J.: Forecasting air quality time series using deep learning. J. Air Waste Manage. Assoc. 68, 866–886 (2018)

    Article  Google Scholar 

  21. Ying, C.: Voltages prediction algorithm based on LSTM recurrent neural network. 10 (2020). (pre-proof)

    Google Scholar 

  22. Li, C., Hsu, N.C., Tsay, S.-C.: A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmos. Environ. 45, 3663–3675 (2011). https://doi.org/10.1016/j.atmosenv.2011.04.032

    Article  Google Scholar 

  23. London, K.C.: London Average Air Quality Levels. https://data.london.gov.uk/dataset/london-average-air-quality-levels

Download references

Acknowledgment

This work is supported by the SDAS Research Group (www.sdas-group.com). Authors are in debt with the SDAS Group internal editor J. Mejía-Ordóñez for the manuscript reviewing and editing.

Sergio Trilles has been funded by the Juan de la Cierva - Incorporación postdoctoral programme of the Ministry of Science and Innovation - Spanish government (IJC2018–035017-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia N. Sánchez-Pozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Pozo, N.N., Trilles-Oliver, S., Solé-Ribalta, A., Lorente-Leyva, L.L., Mayorca-Torres, D., Peluffo-Ordóñez, D.H. (2021). Algorithms Air Quality Estimation: A Comparative Study of Stochastic and Heuristic Predictive Models. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics