Skip to main content

A Parallel Optimization Solver for the Multi-period WDND Problem

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2021)

Abstract

A secure water distribution system is an essential element for any city in the world. The importance and huge capital cost of the system lead to their design optimization. However, the water distribution network design optimization is a multimodal and NP-hard problem, as a consequence, we propose an intelligent optimization solver based on a Parallel Hybrid Simulated Annealing (PHSA) to solve it. The parallelism is applied at the algorithmic level, following a cooperative model. The Markov Chain Length (MCL) is an important Simulated Annealing control parameter, which represents the number of moves to reach the equilibrium state at each temperature value. Our main objective is to analyze the PHSA behavior by considering static and dynamic methods to compute the MCL. The obtained results by PHSA enhance the found ones by the published algorithms. This improvement becomes more interesting when PHSA solves a real-world case. Furthermore, the parallel HSA exhibits efficient scalability to solve the WDND problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eusuff, M., Lansey, K.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manag. - ASCE 129(3), 210–225 (2003)

    Article  Google Scholar 

  2. Yates, D., Templeman, A., Boffey, T.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optim. 7(2), 143–155 (1984)

    Article  Google Scholar 

  3. Loganathan, G., Greene, J., Ahn, T.: Design heuristic for globally minimum cost water-distribution systems. J. Water Resour. Plan. Manag. 121(2), 182–192 (1995)

    Article  Google Scholar 

  4. Cunha, M., Sousa, J.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. 7(1), 32–39 (2001)

    Article  Google Scholar 

  5. Farmani, R., Walters, G.A., Savic, D.A.: Trade-off between total cost and reliability for anytown water distribution network. J. Water Resour. Plan. Manag. 131(3), 161–171 (2005)

    Article  Google Scholar 

  6. Cunha, M., Marques, J.: A new multiobjective simulated annealing algorithm–MOSA-GR: application to the optimal design of water distribution networks. Water Resour. Res. 56(3), e2019WR025852 (2020). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR025852

  7. Gupta, I., Gupta, A., Khanna, P.: Genetic algorithm for optimization of water distribution systems. Environ. Model. Softw. 14(5), 437–446 (1999)

    Article  Google Scholar 

  8. De Corte, A., Sörensen, K.: An iterated local search algorithm for water distribution network design optimization. Network 67(3), 187–198 (2016)

    Article  Google Scholar 

  9. Bermudez, C., Salto, C., Minetti, G.: Solving the multi-period water distribution network design problem with a hybrid simulated anealling. In: Pesado, P., Aciti, C. (eds.) CACIC 2018. CCIS, vol. 995, pp. 3–16. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20787-8_1

    Chapter  Google Scholar 

  10. Bermudez, C., Alfonso, H., Minetti, G., Salto, C.: Hybrid simulated annealing to optimize the water distribution network design: a real case. In: Pesado, P., Eterovic, J. (eds.) CACIC 2020. CCIS, vol. 1409, pp. 19–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75836-3_2

    Chapter  Google Scholar 

  11. Cruz-Chávez, M.A., Avila-Melgar, E.Y., Serna Barquera, S.A., Juárez-Pérez, F.: General methodology for converting a sequential evolutionary algorithm into parallel algorithm with MPI to water design networks. In: 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, pp. 149–154 (2010)

    Google Scholar 

  12. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  13. Czech, Z.J., Mikanik, W., Skinderowicz, R.: Implementing a parallel simulated annealing algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 146–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14390-8_16

    Chapter  Google Scholar 

  14. Mu, D., Wang, C., Zhao, F., Sutherland, J.: Solving vehicle routing problem with simultaneous pickup and delivery using parallel simulated annealing algorithm. Int. J. Shipping Transport Logist. 8, 81–106 (2016)

    Article  Google Scholar 

  15. Cicirello, V.A.: Variable annealing length and parallelism in simulated annealing. CoRR, vol. abs/1709.02877 (2017). http://arxiv.org/abs/1709.02877

  16. Gerdovci, P., Boman, S.: Re-scheduling the railway traffic using parallel simulated annealing and tabu search: a comparative study. Master’s thesis (2015)

    Google Scholar 

  17. Lee, S., Kim, S.B.: Parallel simulated annealing with a greedy algorithm for Bayesian network structure learning. IEEE Trans. Knowl. Data Eng. 32(6), 1157–1166 (2020)

    Article  Google Scholar 

  18. Ding, X., Wu, Y., Wang, Y., Vilseck, J.Z., Brooks, C.L.: Accelerated CDOCKER with GPUs, parallel simulated annealing, and fast Fourier transforms. J. Chem. Theory Comput. 16(6), 3910–3919 (2020). pMID: 32374996. https://doi.org/10.1021/acs.jctc.0c00145

  19. Lincolao-Venegas, I., Rojas-Mora, J.: A centralized solution to the student-school assignment problem in segregated environments via a cuda parallelized simulated annealing algorithm. In: 2020 39th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–8 (2020)

    Google Scholar 

  20. De Corte, A., Sörensen, K.: Hydrogen. http://antor.uantwerpen.be/hydrogen. Accessed 27 June 2018

  21. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Bermudez, C., Minetti, G., Salto, C.: SA to optimize the multi-period water distribution network design. In: XXIX Congreso Argentino de Ciencias de la Computación (CACIC 2018), pp. 12–21 (2018)

    Google Scholar 

  23. Cardoso, M., Salcedo, R., de Azevedo, S.: Nonequilibrium simulated annealing: a faster approach to combinatorial minimization. Ind. Eng. Chem. Res. 33, 1908–1918 (1994)

    Article  Google Scholar 

  24. Ali, M., Törn, A., Viitanen, S.: A direct search variant of the simulated annealing algorithm for optimization involving continuous variables. Comput. Oper. Res. 29(1), 87–102 (2002)

    Article  MathSciNet  Google Scholar 

  25. Bermudez, C., Salto, C., Minetti, G.: Designing a multi-period water distribution network with a hybrid simulated annealing. In: XLVIII JAIIO: XX Simposio Argentino de Inteligencia Artificial (ASAI 2019), pp. 39–52 (2019)

    Google Scholar 

  26. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Universidad Nacional de La Pampa (Project FI-CD-107/20) and the Incentive Program from MINCyT. The last author is also funded by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Minetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bermudez, C., Alfonso, H., Minetti, G., Salto, C. (2021). A Parallel Optimization Solver for the Multi-period WDND Problem. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics