Abstract
The problem of calculating inverse kinematics of a robotic manipulator is known to be non-trivial and not straightforward to solve for centuries. Hence, multiple different approaches have been developed, extended, and further developed that iteratively approximate toward a suitable solution. Unfortunately, all these existing solutions share the problem to get unreliable in singular positions – a standard configuration of human legs, e.g. when standing. Within this work, a simple extension to the iterative Damped Least Square algorithm is presented that covers the problematic, singular configuration case. The proposed algorithm is thereby focusing on continuous solving of small, iterative pose changes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the Inverse Kinematics problem. Graph. Models 73(5), 243–260 (2011)
Balestrino, A., De Maria, G., Sciavicco, L.: Robust control of robotic manipulators. IFAC Proc. Vol. 17(2), 2435–2440 (1984)
Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot-tying simulation. Vis. Comput. 20(2), 165–179 (2004)
Buss, S.R., Kim, J.S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10(3), 37–49 (2005)
Chiaverini, S., Egeland, O., Kanestrom, R.: Achieving user-defined accuracy with damped least-squares inverse kinematics. In: Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Pisa, Italy, vol. 1, pp. 672–677. IEEE (1991)
Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control Syst. Technol. 2(2), 123–134 (1994)
Courty, N., Arnaud, E.: Inverse kinematics using sequential Monte Carlo methods. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 1–10. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70517-8_1
Duleba, I., Opalka, M.: A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators. Int. J. Appl. Math. Comput. Sci. 23(2), 373–382 (2013)
Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)
Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-Based Inverse Kinematics. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, New York, NY, USA, vol. 10, pp. 522–531. Association for Computing Machinery (2004)
Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Contr. 108(3), 163–171 (1986)
Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: CARL – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)
Vonwirth, P., Nejadfard, A., Mianowski, K., Berns, K.: SLIP-based concept of combined limb and body control of force-driven robots. In: Zeghloul, S., Laribi, M.A., Sandoval Arevalo, J.S. (eds.) RAAD 2020. MMS, vol. 84, pp. 547–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48989-2_58
Wampler, C.: manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)
Wang, L.C., Chen, C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)
Wolovich, W., Elliott, H.: A computational technique for inverse kinematics. In: The 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 1359–1363. IEEE, December 1984
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vonwirth, P., Berns, K. (2022). Continuous Inverse Kinematics in Singular Position. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-86294-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86293-0
Online ISBN: 978-3-030-86294-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)