Abstract
The lack of training data is still a challenge in the Document Layout Analysis task (DLA). Synthetic data is an effective way to tackle this challenge. In this paper, we propose an LSTM-based Variational Autoencoder framework (LSTMVAF) to synthesize layouts for DLA. Compared with the previous method, our method can generate more complicated layouts and only need training data from DLA without extra annotation. We use LSTM models as basic models to learn the potential representing of class and position information of elements within a page. It is worth mentioning that we design a weight adaptation strategy to help model train faster. The experiment shows our model can generate more vivid layouts that only need a few real document pages.
J. He and X. Wu—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Clark, C.A., Divvala, S.: Looking beyond text: extracting figures, tables and captions from computer science papers. In: AAAI (2015)
Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (1999)
Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)
Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidirectional LSTM. In: IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273–278. IEEE (2013)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439–2448 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)
Jia, X., Gavves, E., Fernando, B., Tuytelaars, T.: Guiding the long-short term memory model for image caption generation. In: ICCV, pp. 2407–2415 (2015)
Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: stochastic scene layout generation from a label set. In: ICCV, pp. 9895–9904 (2019)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: generating graphic layouts with wireframe discriminators. In: ICLR (2019)
Li, W., et al.: Object-driven text-to-image synthesis via adversarial training. In: CVPR, pp. 12174–12182 (2019)
Mehri, M., Nayef, N., Héroux, P., Gomez-Krämer, P., Mullot, R.: Learning texture features for enhancement and segmentation of historical document images. In: ICDAR, pp. 47–54 (2015)
Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: READ: recursive autoencoders for document layout generation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2316–2325 (2020)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2015)
Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical latent vector model for learning long-term structure in music. In: ICML (2018)
Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: decomposing motion and content for video generation. In: CVPR, pp. 1526–1535 (2018)
Wang, T., Wan, X.: T-CVAE: transformer-based conditioned variational autoencoder for story completion. In: IJCAI, pp. 5233–5239 (2019)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Wu, X., Hu, Z., Du, X., Yang, J., He, L.: Document layout analysis via dynamic residual feature fusion. In: ICME (2021)
Yang, X., Yumer, E., Asente, P., Kraley, M., Kifer, D., Lee Giles, C.: Learning to extract semantic structure from documents using multimodal fully convolutional neural networks. In: CVPR, pp. 5315–5324 (2017)
Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: CVPR, pp. 5485–5493 (2017)
Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: CVPR, pp. 4694–4702 (2015)
Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic design layouts. ACM Trans. Graph. 38(4), 1–15 (2019)
Zheng, Y., Kong, S., Zhu, W., Ye, H.: Scalable document image information extraction with application to domain-specific analysis. In: IEEE International Conference on Big Data (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)
Acknowledgement
This work was supported in part by the Fundamental Research Funds for the Central Universities, the 2020 East China Normal University Outstanding Doctoral Students Academic Innovation Ability Improvement Project (YBNLTS2020-042), and the computation is performed in ECNU Multifunctional Platform for Innovation (001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
He, J., Wu, X., Hu, W., Yang, J. (2021). LSTMVAEF: Vivid Layout via LSTM-Based Variational Autoencoder Framework. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12822. Springer, Cham. https://doi.org/10.1007/978-3-030-86331-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-86331-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86330-2
Online ISBN: 978-3-030-86331-9
eBook Packages: Computer ScienceComputer Science (R0)