Skip to main content

Can Text Summarization Enhance the Headline Stance Detection Task? Benefits and Drawbacks

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12822))

Included in the following conference series:

  • 3977 Accesses

Abstract

This paper presents an exploratory study that analyzes the benefits and drawbacks of summarization techniques for the headline stance detection. Different types of summarization approaches are tested, as well as two stance detection methods (machine learning vs deep learning) on two state-of-the-art datasets (Emergent and FNC–1). Journalists’ headlines sourced from the Emergent dataset have demonstrated with very competitive results that they can be considered a summary of the news article. Based on this finding, this work evaluates the effectiveness of using summaries as a substitute for the full body text to determine the stance of a headline. As for automatic summarization methods, although there is still some room for improvement, several of the techniques analyzed show greater results compared to using the full body text—Lead Summarizer and PLM Summarizer are among the best-performing ones. In particular, PLM summarizer, especially when five sentences are selected as the summary length and deep learning is used, obtains the highest results compared to the other automatic summarization methods analyzed.

This research work has been partially funded by Generalitat Valenciana through project “SIIA: Tecnologias del lenguaje humano para una sociedad inclusiva, igualitaria, y accesible” (PROMETEU/2018/089), by the Spanish Government through project “Modelang: Modeling the behavior of digital entities by Human Language Technologies” (RTI2018-094653-B-C22), and project “INTEGER - Intelligent Text Generation” (RTI2018-094649-B-I00). Also, this paper is also based upon work from COST Action CA18231 “Multi3Generation: Multi-task, Multilingual, Multi-modal Language Generation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Published at Technocracy News https://www.technocracy.news/.

  2. 2.

    https://www.snopes.com/fact-check/lemons-coronavirus/.

  3. 3.

    https://www.snopes.com/fact-check/cattle-vaccine-covid-19/.

  4. 4.

    http://www.fakenewschallenge.org/.

  5. 5.

    Published on Feb. 5, 2020, the website AB-TC (aka City News) and fact-checked as false in https://www.snopes.com/fact-check/china-kill-coronavirus-patients/?collection-id=240413.

  6. 6.

    For this research, the implementation used was obtained from: https://github.com/miso-belica/sumy/blob/master/sumy/summarizers/text_rank.py.

  7. 7.

    Synsets are identifiers that denote a set of synonyms.

  8. 8.

    From the implementation available at: http://www.github.com/ChenRocks/fast_abs_rl.

  9. 9.

    DL is a specific type of ML but we use this nomenclature to indicate a difference between non-DL approaches and DL ones.

  10. 10.

    https://github.com/willferreira/mscproject.

  11. 11.

    http://www.fakenewschallenge.org/.

  12. 12.

    Compression ratio means how much of the text has been kept for the summary and it is calculated as the length of the summary divided by the length of the document [25].

References

  1. Alonso-Reina, A., Sepúlveda-Torres, R., Saquete, E., Palomar, M.: Team GPLSI. Approach for automated fact checking. In: Proceedings of the Second Workshop on Fact Extraction and VERification, pp. 110–114. Association for Computational Linguistics (2019)

    Google Scholar 

  2. Babakar, M., et al.: Fake news challenge - I (2016). http://www.fakenewschallenge.org/. Accessed 21 Jan 2021

  3. Barros, C., Lloret, E.: HanaNLG: a flexible hybrid approach for natural language generation. In: Proceedings of the International Conference on Computational Linguistics and Intelligent Text Processing (2019)

    Google Scholar 

  4. Barros, C., Lloret, E., Saquete, E., Navarro-Colorado, B.: NATSUM: narrative abstractive summarization through cross-document timeline generation. Inf. Process. Manag. 56(5), 1775–1793 (2019)

    Google Scholar 

  5. Benson, R., Hallin, D.: How states, markets and globalization shape the news the French and US national press, 1965–97. Eur. J. Commun. 22, 27–48 (2007)

    Google Scholar 

  6. Bilmes, J.A., Kirchhoff, K.: Factored language models and generalized parallel backoff. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 4–6. Association for Computational Linguistics (2003)

    Google Scholar 

  7. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017)

    Google Scholar 

  8. Bourgonje, P., Moreno Schneider, J., Rehm, G.: From clickbait to fake news detection: an approach based on detecting the stance of headlines to articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing Meets Journalism, pp. 84–89. ACL (2017)

    Google Scholar 

  9. Bulicanu, V.: Over-information or infobesity phenomenon in media. Int. J. Commun. Res. 4(2), 177–177 (2019)

    Google Scholar 

  10. Chaudhry, A.K., Baker, D., Thun-Hohenstein, P.: Stance detection for the fake news challenge: identifying textual relationships with deep neural nets. In: CS224n: Natural Language Processing with Deep Learning (2017)

    Google Scholar 

  11. Chen, Q., Zhu, X., Ling, Z.H., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for natural language inference. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1657–1668 (2017)

    Google Scholar 

  12. Chen, Y.C., Bansal, M.: Fast abstractive summarization with reinforce-selected sentence rewriting. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, (Volume 1: Long Papers), pp. 675–686 (2018)

    Google Scholar 

  13. Chen, Y., Conroy, N.K., Rubin, V.L.: News in an online world: The need for an “automatic crap detector”. In: Proceedings of the Association for Information Science and Technology, vol. 52, no. 1, pp. 1–4 (2015)

    Google Scholar 

  14. Chesney, S., Liakata, M., Poesio, M., Purver, M.: Incongruent headlines: yet another way to mislead your readers. Proc. Nat. Lang. Process. Meets J. 2017, 56–61 (2017)

    Google Scholar 

  15. Colomina, C.: Coronavirus: infodemia y desinformación (2017). https://www.cidob.org/es/publicaciones/serie_de_publicacion/opinion_cidob/seguridad_y_politica_mundial/coronavirus_infodemia_y_desinformacion. Accessed 21 Jan 2021

  16. Dias, P.: From “infoxication” to “infosaturation” : a theoretical overview of the congnitive and social effects of digital immersion. In: Primer Congreso Internacional Infoxicación : mercado de la información y psique, Libro de Actas, pp. 67–84 (2014)

    Google Scholar 

  17. van Dijk, T.: News As Discourse. Taylor & Francis. Routledge Communication Series (2013)

    Google Scholar 

  18. Esmaeilzadeh, S., Peh, G.X., Xu, A.: Neural abstractive text summarization and fake news detection. CoRR (2019). http://arxiv.org/abs/1904.00788

  19. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)

    Google Scholar 

  20. Ferreira, R., et al.: Assessing sentence scoring techniques for extractive text summarization. Expert Syst. Appl. 40(14), 5755–5764 (2013)

    Google Scholar 

  21. Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 1163–1168. Association for Computational Linguistics (2016)

    Google Scholar 

  22. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-detection task. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1859–1874. Association for Computational Linguistics, August 2018

    Google Scholar 

  23. Hanselowski, A., et al.: UKP-Athene: multi-sentence textual entailment for claim verification. In: Proceedings of the First Workshop on Fact Extraction and VERification, pp. 103–108 (2018)

    Google Scholar 

  24. Hayashi, Y., Yanagimoto, H.: Headline generation with recurrent neural network. In: Matsuo, T., Mine, T., Hirokawa, S. (eds.) New Trends in E-service and Smart Computing. SCI, vol. 742, pp. 81–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70636-8_6

    Chapter  Google Scholar 

  25. Hovy, E.: Text summarization. In: Mitkov, R. (ed.) The Oxford Handbook of Computational Linguistics, pp. 583–598. Oxford University Press, Oxford (2004)

    Google Scholar 

  26. Huang, Z., Ye, Z., Li, S., Pan, R.: Length adaptive recurrent model for text classification. In: Proceedings of the ACM on Conference on Information and Knowledge Management, pp. 1019–1027. Association for Computing Machinery (2017)

    Google Scholar 

  27. Jeong, H., Ko, Y., Seo, J.: How to improve text summarization and classification by mutual cooperation on an integrated framework. Expert Syst. Appl. 60, 222–233 (2016)

    Google Scholar 

  28. Kirmani, M., Manzoor Hakak, N., Mohd, M., Mohd, M.: Hybrid text summarization: a survey. In: Ray, K., Sharma, T.K., Rawat, S., Saini, R.K., Bandyopadhyay, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 742, pp. 63–73. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0589-4_7

    Chapter  Google Scholar 

  29. Lloret, E., Llorens, H., Moreda, P., Saquete, E., Palomar, M.: Text summarization contribution to semantic question answering: new approaches for finding answers on the web. Int. J. Intell. Syst. 26(12), 1125–1152 (2011)

    Google Scholar 

  30. Lloret, E., Palomar, M.: Text summarisation in progress: a literature review. Artif. Intell. Rev. 37(1), 1–41 (2012)

    Google Scholar 

  31. Lv, Y., Zhai, C.: Positional language models for information retrieval. In: Proceedings of the 32Nd International ACM SIGIR, pp. 299–306. ACM (2009)

    Google Scholar 

  32. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics (2004)

    Google Scholar 

  33. Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Language Resources and Evaluation Conference. ELRA (2012)

    Google Scholar 

  34. Park, C.S.: Does too much news on social media discourage news seeking? Mediating role of news efficacy between perceived news overload and news avoidance on social media. Soc. Media Soc. 5(3), 1–12 (2019)

    Google Scholar 

  35. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  36. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Conference on Empirical Methods on Natural Language Processing 2014, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  37. Perea-Ortega, J.M., Lloret, E., Ureña-López, L.A., Palomar, M.: Application of text summarization techniques to the geographical information retrieval task. Expert Syst. Appl. 40(8), 2966–2974 (2013)

    Google Scholar 

  38. Pöttker, H.: News and its communicative quality: the inverted pyramid—when and why did it appear? J. Stud. 4(4), 501–511 (2003)

    Google Scholar 

  39. Rakholia, N., Bhargava, S.: Is it true?-Deep learning for stance detection in news. Technical report. Stanford University (2016)

    Google Scholar 

  40. Raposo, F., Ribeiro, R., Martins de Matos, D.: Using generic summarization to improve music information retrieval tasks. IEEE/ACM Trans. Audio Speech Lang. Process. 24(6), 1119–1128 (2016)

    Google Scholar 

  41. Riedel, B., Augenstein, I., Spithourakis, G.P., Riedel, S.: A simple but tough-to-beat baseline for the Fake News Challenge stance detection task. CoRR abs/1707.03264 (2017). http://arxiv.org/abs/1707.03264

  42. Rodríguez, R.F., Barrio, M.G.: Infoxication: implications of the phenomenon in journalism. Revista de Comunicación de la SEECI 38, 141–181 (2015). https://doi.org/10.15198/seeci.2015.38.141-181

  43. Rubin, V.L.: Disinformation and misinformation triangle. J. Doc. 75(5), 1013–1034 (2019)

    Google Scholar 

  44. Saggion, H., Lloret, E., Palomar, M.: Can text summaries help predict ratings? A case study of movie reviews. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 271–276. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31178-9_33

    Chapter  Google Scholar 

  45. Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania (2005)

    Google Scholar 

  46. Shim, J.-S., Won, H.-R., Ahn, H.: A study on the effect of the document summarization technique on the fake news detection model 25(3), 201–220 (2019)

    Google Scholar 

  47. Silverman, C.: Lies, Damn Lies and Viral Content (2019). https://academiccommons.columbia.edu/doi/10.7916/D8Q81RHH. Accessed 21 Jan 2021

  48. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 809–819. Association for Computational Linguistics (2018)

    Google Scholar 

  49. Tsarev, D., Petrovskiy, M., Mashechkin, I.: Supervised and unsupervised text classification via generic summarization. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. MIR Labs 5, 509–515 (2013)

    Google Scholar 

  50. Vicente, M., Barros, C., Lloret, E.: Statistical language modelling for automatic story generation. J. Intell. Fuzzy Syst. 34(5), 3069–3079 (2018)

    Google Scholar 

  51. Vicente, M., Lloret, E.: A discourse-informed approach for cost-effective extractive summarization. In: Espinosa-Anke, L., Martín-Vide, C., Spasić, I. (eds.) SLSP 2020. LNCS (LNAI), vol. 12379, pp. 109–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59430-5_9

    Chapter  Google Scholar 

  52. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Google Scholar 

  53. Wei, W., Wan, X.: Learning to identify ambiguous and misleading news headlines. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 4172–4178. AAAI Press (2017)

    Google Scholar 

  54. Widyassari, A.P., Affandy, A., Noersasongko, E., Fanani, A.Z., Syukur, A., Basuki, R.S.: Literature review of automatic text summarization: research trend, dataset and method. In: International Conference on Information and Communications Technology, pp. 491–496 (2019)

    Google Scholar 

  55. Yan, R., Jiang, H., Lapata, M., Lin, S.D., Lv, X., Li, X.: Semantic v.s. positions: utilizing balanced proximity in language model smoothing for information retrieval. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, pp. 507–515 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vicente, M., Sepúlveda-Torrres, R., Barros, C., Saquete, E., Lloret, E. (2021). Can Text Summarization Enhance the Headline Stance Detection Task? Benefits and Drawbacks. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12822. Springer, Cham. https://doi.org/10.1007/978-3-030-86331-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86331-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86330-2

  • Online ISBN: 978-3-030-86331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics