Abstract
This paper presents an exploratory study that analyzes the benefits and drawbacks of summarization techniques for the headline stance detection. Different types of summarization approaches are tested, as well as two stance detection methods (machine learning vs deep learning) on two state-of-the-art datasets (Emergent and FNC–1). Journalists’ headlines sourced from the Emergent dataset have demonstrated with very competitive results that they can be considered a summary of the news article. Based on this finding, this work evaluates the effectiveness of using summaries as a substitute for the full body text to determine the stance of a headline. As for automatic summarization methods, although there is still some room for improvement, several of the techniques analyzed show greater results compared to using the full body text—Lead Summarizer and PLM Summarizer are among the best-performing ones. In particular, PLM summarizer, especially when five sentences are selected as the summary length and deep learning is used, obtains the highest results compared to the other automatic summarization methods analyzed.
This research work has been partially funded by Generalitat Valenciana through project “SIIA: Tecnologias del lenguaje humano para una sociedad inclusiva, igualitaria, y accesible” (PROMETEU/2018/089), by the Spanish Government through project “Modelang: Modeling the behavior of digital entities by Human Language Technologies” (RTI2018-094653-B-C22), and project “INTEGER - Intelligent Text Generation” (RTI2018-094649-B-I00). Also, this paper is also based upon work from COST Action CA18231 “Multi3Generation: Multi-task, Multilingual, Multi-modal Language Generation”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Published at Technocracy News https://www.technocracy.news/.
- 2.
- 3.
- 4.
- 5.
Published on Feb. 5, 2020, the website AB-TC (aka City News) and fact-checked as false in https://www.snopes.com/fact-check/china-kill-coronavirus-patients/?collection-id=240413.
- 6.
For this research, the implementation used was obtained from: https://github.com/miso-belica/sumy/blob/master/sumy/summarizers/text_rank.py.
- 7.
Synsets are identifiers that denote a set of synonyms.
- 8.
From the implementation available at: http://www.github.com/ChenRocks/fast_abs_rl.
- 9.
DL is a specific type of ML but we use this nomenclature to indicate a difference between non-DL approaches and DL ones.
- 10.
- 11.
- 12.
Compression ratio means how much of the text has been kept for the summary and it is calculated as the length of the summary divided by the length of the document [25].
References
Alonso-Reina, A., Sepúlveda-Torres, R., Saquete, E., Palomar, M.: Team GPLSI. Approach for automated fact checking. In: Proceedings of the Second Workshop on Fact Extraction and VERification, pp. 110–114. Association for Computational Linguistics (2019)
Babakar, M., et al.: Fake news challenge - I (2016). http://www.fakenewschallenge.org/. Accessed 21 Jan 2021
Barros, C., Lloret, E.: HanaNLG: a flexible hybrid approach for natural language generation. In: Proceedings of the International Conference on Computational Linguistics and Intelligent Text Processing (2019)
Barros, C., Lloret, E., Saquete, E., Navarro-Colorado, B.: NATSUM: narrative abstractive summarization through cross-document timeline generation. Inf. Process. Manag. 56(5), 1775–1793 (2019)
Benson, R., Hallin, D.: How states, markets and globalization shape the news the French and US national press, 1965–97. Eur. J. Commun. 22, 27–48 (2007)
Bilmes, J.A., Kirchhoff, K.: Factored language models and generalized parallel backoff. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 4–6. Association for Computational Linguistics (2003)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017)
Bourgonje, P., Moreno Schneider, J., Rehm, G.: From clickbait to fake news detection: an approach based on detecting the stance of headlines to articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing Meets Journalism, pp. 84–89. ACL (2017)
Bulicanu, V.: Over-information or infobesity phenomenon in media. Int. J. Commun. Res. 4(2), 177–177 (2019)
Chaudhry, A.K., Baker, D., Thun-Hohenstein, P.: Stance detection for the fake news challenge: identifying textual relationships with deep neural nets. In: CS224n: Natural Language Processing with Deep Learning (2017)
Chen, Q., Zhu, X., Ling, Z.H., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for natural language inference. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1657–1668 (2017)
Chen, Y.C., Bansal, M.: Fast abstractive summarization with reinforce-selected sentence rewriting. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, (Volume 1: Long Papers), pp. 675–686 (2018)
Chen, Y., Conroy, N.K., Rubin, V.L.: News in an online world: The need for an “automatic crap detector”. In: Proceedings of the Association for Information Science and Technology, vol. 52, no. 1, pp. 1–4 (2015)
Chesney, S., Liakata, M., Poesio, M., Purver, M.: Incongruent headlines: yet another way to mislead your readers. Proc. Nat. Lang. Process. Meets J. 2017, 56–61 (2017)
Colomina, C.: Coronavirus: infodemia y desinformación (2017). https://www.cidob.org/es/publicaciones/serie_de_publicacion/opinion_cidob/seguridad_y_politica_mundial/coronavirus_infodemia_y_desinformacion. Accessed 21 Jan 2021
Dias, P.: From “infoxication” to “infosaturation” : a theoretical overview of the congnitive and social effects of digital immersion. In: Primer Congreso Internacional Infoxicación : mercado de la información y psique, Libro de Actas, pp. 67–84 (2014)
van Dijk, T.: News As Discourse. Taylor & Francis. Routledge Communication Series (2013)
Esmaeilzadeh, S., Peh, G.X., Xu, A.: Neural abstractive text summarization and fake news detection. CoRR (2019). http://arxiv.org/abs/1904.00788
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
Ferreira, R., et al.: Assessing sentence scoring techniques for extractive text summarization. Expert Syst. Appl. 40(14), 5755–5764 (2013)
Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 1163–1168. Association for Computational Linguistics (2016)
Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-detection task. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1859–1874. Association for Computational Linguistics, August 2018
Hanselowski, A., et al.: UKP-Athene: multi-sentence textual entailment for claim verification. In: Proceedings of the First Workshop on Fact Extraction and VERification, pp. 103–108 (2018)
Hayashi, Y., Yanagimoto, H.: Headline generation with recurrent neural network. In: Matsuo, T., Mine, T., Hirokawa, S. (eds.) New Trends in E-service and Smart Computing. SCI, vol. 742, pp. 81–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70636-8_6
Hovy, E.: Text summarization. In: Mitkov, R. (ed.) The Oxford Handbook of Computational Linguistics, pp. 583–598. Oxford University Press, Oxford (2004)
Huang, Z., Ye, Z., Li, S., Pan, R.: Length adaptive recurrent model for text classification. In: Proceedings of the ACM on Conference on Information and Knowledge Management, pp. 1019–1027. Association for Computing Machinery (2017)
Jeong, H., Ko, Y., Seo, J.: How to improve text summarization and classification by mutual cooperation on an integrated framework. Expert Syst. Appl. 60, 222–233 (2016)
Kirmani, M., Manzoor Hakak, N., Mohd, M., Mohd, M.: Hybrid text summarization: a survey. In: Ray, K., Sharma, T.K., Rawat, S., Saini, R.K., Bandyopadhyay, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 742, pp. 63–73. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0589-4_7
Lloret, E., Llorens, H., Moreda, P., Saquete, E., Palomar, M.: Text summarization contribution to semantic question answering: new approaches for finding answers on the web. Int. J. Intell. Syst. 26(12), 1125–1152 (2011)
Lloret, E., Palomar, M.: Text summarisation in progress: a literature review. Artif. Intell. Rev. 37(1), 1–41 (2012)
Lv, Y., Zhai, C.: Positional language models for information retrieval. In: Proceedings of the 32Nd International ACM SIGIR, pp. 299–306. ACM (2009)
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics (2004)
Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Language Resources and Evaluation Conference. ELRA (2012)
Park, C.S.: Does too much news on social media discourage news seeking? Mediating role of news efficacy between perceived news overload and news avoidance on social media. Soc. Media Soc. 5(3), 1–12 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Conference on Empirical Methods on Natural Language Processing 2014, vol. 14, pp. 1532–1543 (2014)
Perea-Ortega, J.M., Lloret, E., Ureña-López, L.A., Palomar, M.: Application of text summarization techniques to the geographical information retrieval task. Expert Syst. Appl. 40(8), 2966–2974 (2013)
Pöttker, H.: News and its communicative quality: the inverted pyramid—when and why did it appear? J. Stud. 4(4), 501–511 (2003)
Rakholia, N., Bhargava, S.: Is it true?-Deep learning for stance detection in news. Technical report. Stanford University (2016)
Raposo, F., Ribeiro, R., Martins de Matos, D.: Using generic summarization to improve music information retrieval tasks. IEEE/ACM Trans. Audio Speech Lang. Process. 24(6), 1119–1128 (2016)
Riedel, B., Augenstein, I., Spithourakis, G.P., Riedel, S.: A simple but tough-to-beat baseline for the Fake News Challenge stance detection task. CoRR abs/1707.03264 (2017). http://arxiv.org/abs/1707.03264
Rodríguez, R.F., Barrio, M.G.: Infoxication: implications of the phenomenon in journalism. Revista de Comunicación de la SEECI 38, 141–181 (2015). https://doi.org/10.15198/seeci.2015.38.141-181
Rubin, V.L.: Disinformation and misinformation triangle. J. Doc. 75(5), 1013–1034 (2019)
Saggion, H., Lloret, E., Palomar, M.: Can text summaries help predict ratings? A case study of movie reviews. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 271–276. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31178-9_33
Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania (2005)
Shim, J.-S., Won, H.-R., Ahn, H.: A study on the effect of the document summarization technique on the fake news detection model 25(3), 201–220 (2019)
Silverman, C.: Lies, Damn Lies and Viral Content (2019). https://academiccommons.columbia.edu/doi/10.7916/D8Q81RHH. Accessed 21 Jan 2021
Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, pp. 809–819. Association for Computational Linguistics (2018)
Tsarev, D., Petrovskiy, M., Mashechkin, I.: Supervised and unsupervised text classification via generic summarization. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. MIR Labs 5, 509–515 (2013)
Vicente, M., Barros, C., Lloret, E.: Statistical language modelling for automatic story generation. J. Intell. Fuzzy Syst. 34(5), 3069–3079 (2018)
Vicente, M., Lloret, E.: A discourse-informed approach for cost-effective extractive summarization. In: Espinosa-Anke, L., Martín-Vide, C., Spasić, I. (eds.) SLSP 2020. LNCS (LNAI), vol. 12379, pp. 109–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59430-5_9
Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
Wei, W., Wan, X.: Learning to identify ambiguous and misleading news headlines. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 4172–4178. AAAI Press (2017)
Widyassari, A.P., Affandy, A., Noersasongko, E., Fanani, A.Z., Syukur, A., Basuki, R.S.: Literature review of automatic text summarization: research trend, dataset and method. In: International Conference on Information and Communications Technology, pp. 491–496 (2019)
Yan, R., Jiang, H., Lapata, M., Lin, S.D., Lv, X., Li, X.: Semantic v.s. positions: utilizing balanced proximity in language model smoothing for information retrieval. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, pp. 507–515 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Vicente, M., Sepúlveda-Torrres, R., Barros, C., Saquete, E., Lloret, E. (2021). Can Text Summarization Enhance the Headline Stance Detection Task? Benefits and Drawbacks. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12822. Springer, Cham. https://doi.org/10.1007/978-3-030-86331-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-86331-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86330-2
Online ISBN: 978-3-030-86331-9
eBook Packages: Computer ScienceComputer Science (R0)