Skip to main content

Image Collation: Matching Illustrations in Manuscripts

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12824))

Included in the following conference series:

Abstract

Illustrations are an essential transmission instrument. For an historian, the first step in studying their evolution in a corpus of similar manuscripts is to identify which ones correspond to each other. This image collation task is daunting for manuscripts separated by many lost copies, spreading over centuries, which might have been completely re-organized and greatly modified to adapt to novel knowledge or belief and include hundreds of illustrations. Our contributions in this paper are threefold. First, we introduce the task of illustration collation and a large annotated public dataset to evaluate solutions, including 6 manuscripts of 2 different texts with more than 2 000 illustrations and 1 200 annotated correspondences. Second, we analyze state of the art similarity measures for this task and show that they succeed in simple cases but struggle for large manuscripts when the illustrations have undergone very significant changes and are discriminated only by fine details. Finally, we show clear evidence that significant performance boosts can be expected by exploiting cycle-consistent correspondences. Our code and data are available on http://imagine.enpc.fr/~shenx/ImageCollation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.wdl.org

  2. https://www.themorgan.org

  3. https://digi.vatlib.it

  4. http://www.internetculturale.it

  5. Bourdaillet, J., Ganascia, J.G.: Practical block sequence alignment with moves. In: LATA (2007)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv (2020)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  8. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: ACM Multimedia (2019)

    Google Scholar 

  9. En, S., Petitjean, C., Nicolas, S., Heutte, L.: A scalable pattern spotting system for historical documents. Pattern Recognit. 54, 149–161 (2016)

    Google Scholar 

  10. Ezra, D.S.B., Brown-DeVost, B., Dershowitz, N., Pechorin, A., Kiessling, B.: The dead sea scrolls. In: ICFHR, Transcription alignment for highly fragmentary historical manuscripts (2020)

    Google Scholar 

  11. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  12. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. IJCV 124(2), 237–254 (2017)

    Article  MathSciNet  Google Scholar 

  13. Haentjens Dekker, R., Van Hulle, D., Middell, G., Neyt, V., Van Zundert, J.: Computer-supported collation of modern manuscripts: collatex and the Beckett Digital Manuscript Project. DSH 30(3), 452–470 (2015)

    Article  Google Scholar 

  14. Hassner, T., Wolf, L., Dershowitz, N.: OCR-free transcript alignment. In: ICDAR (2013)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Hobby, J.D.: Matching document images with ground truth. IJDAR 1(1), 52–61 (1998)

    Google Scholar 

  17. Kornfield, E.M., Manmatha, R. and Allan, J.: Text alignment with handwritten documents. In: DIAL (2004)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  19. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Monnier, T., Aubry, M.: docExtractor: an off-the-shelf historical document element extraction. In: ICFHR (2020)

    Google Scholar 

  22. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. TPAMI 41(7), 1655–1668 (2018)

    Article  Google Scholar 

  23. Razavian, A.S., Sullivan, J., Carlsson, S., Maki, A.: Visual instance retrieval with deep convolutional networks. MTA 4(3), 251–258 (2016)

    Google Scholar 

  24. Revaud, J., Almazán, J., Rezende, R.S., Souza, C.R.D.: Learning with average precision: training image retrieval with a listwise loss. In: ICCV (2019)

    Google Scholar 

  25. Sadeh, G., Wolf, L., Hassner, T., Dershowitz, N., Ben-Ezra, D.S.: Viral transcript alignment. In: ICDAR (2015)

    Google Scholar 

  26. Schmidt, D., Colomb, R.: A data structure for representing multi-version texts online. Int. J. Hum.-Comput. Stud. 67(6), 497–514 (2009)

    Article  Google Scholar 

  27. Shen, X., Efros, A.A., Aubry, M.: Discovering visual patterns in art collections with spatially-consistent feature learning. In: CVPR (2019)

    Google Scholar 

  28. Shen, X., et al.: Large-scale historical watermark recognition: dataset and a new consistency-based approach. In: ICPR (2020)

    Google Scholar 

  29. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  30. Smith, S.E.: The eternal verities verified: Charlton Hinman and the roots of mechanical collation. Stud. Bibliogr. 53, 129–161 (2000)

    Google Scholar 

  31. Úbeda, I., Saavedra, J.M., Stéphane, N., Caroline, P., Heutte, L.: Pattern spotting in historical documents using convolutional models. In: HIP (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by ANR project EnHerit ANR-17-CE23-0008, project Rapid Tabasco, and gifts from Adobe. We thank Alexandre Guilbaud for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Aubry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaoua, R., Shen, X., Durr, A., Lazaris, S., Picard, D., Aubry, M. (2021). Image Collation: Matching Illustrations in Manuscripts. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12824. Springer, Cham. https://doi.org/10.1007/978-3-030-86337-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86337-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86336-4

  • Online ISBN: 978-3-030-86337-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics