Skip to main content

MMF: A Loss Extension for Feature Learning in Open Set Recognition

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

The objective of open set recognition (OSR) is to classify the known classes as well as the unknown classes when the collected samples cannot exhaust all the classes. This paper proposes a loss extension that emphasizes features with larger and smaller magnitudes to find representations that can more effectively separate the known from the unknown classes. Our contributions include: First, we introduce an extension that can be incorporated into different loss functions to find more discriminative representations. Second, we show that the proposed extension can significantly improve the performances of two different types of loss functions on datasets from two different domains. Third, we show that with the proposed extension, one loss function outperforms the others in training time and model accuracy.

Partially supported by grants from Amazon and Rockwell Collins to Philip Chan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  2. Dhamija, A.R., Günther, M., Boult, T.E.: Reducing network agnostophobia. In: Advances in Neural Information Processing Systems, vol. 31, pp. 9175–9186 (2018)

    Google Scholar 

  3. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android malware using embedded call graphs. In: AISec 2013, pp. 45–54 (2013)

    Google Scholar 

  4. Hassen, M., Chan, P.K.: Scalable function call graph-based malware classification. In: Proceedings ACM Conference on Data and Application Security and Privacy, pp. 239–248 (2017)

    Google Scholar 

  5. Hassen, M., Chan, P.K.: Learning a neural-network-based representation for open set recognition. In: Proceedings SIAM International Conference Data Mining, pp. 154–162 (2020)

    Google Scholar 

  6. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. In: 7th International Conference on Learning Representations (2019)

    Google Scholar 

  7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  8. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database (1999). http://yann.lecun.com/exdb/mnist/

  9. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: International Conference Learning Representations (2018)

    Google Scholar 

  10. Li, X.-L., Liu, B.: Learning from positive and unlabeled examples with different data distributions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 218–229. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_24

    Chapter  Google Scholar 

  11. Neal, L., Olson, M., Fern, X., Wong, W.-K., Li, F.: Open set learning with counterfactual images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 620–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_38

    Chapter  Google Scholar 

  12. Ortiz, E.G., Becker, B.C.: Face recognition for web-scale datasets. Comput. Vis. Image Underst. 118, 153–170 (2014)

    Article  Google Scholar 

  13. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencoders. In: NeurIPS, vol. 31, pp. 6823–6834 (2018)

    Google Scholar 

  14. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware classification challenge. CoRR arXiv:1802.10135 (2018)

  15. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Information Processing in Medical Imaging, pp. 146–157 (2017)

    Google Scholar 

  16. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Conference on CVPR, pp. 815–823 (2015)

    Google Scholar 

  17. Schultheiss, A., Käding, C., Freytag, A., Denzler, J.: Finding the unknown: novelty detection with extreme value signatures of deep neural activations. In: Pattern Recognition - 39th German Conference, pp. 226–238 (2017)

    Google Scholar 

  18. Zhou, Y., Jiang, X.: Android malware genome project (2015). http://www.malgenomeproject.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, J., Chan, P.K. (2021). MMF: A Loss Extension for Feature Learning in Open Set Recognition. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12892. Springer, Cham. https://doi.org/10.1007/978-3-030-86340-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86340-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86339-5

  • Online ISBN: 978-3-030-86340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics