Skip to main content

Balanced Softmax Cross-Entropy for Incremental Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12892))

Included in the following conference series:

Abstract

Deep neural networks are prone to catastrophic forgetting when incrementally trained on new classes or new tasks as adaptation to the new data leads to a drastic decrease of the performance on the old classes and tasks. By using a small memory for rehearsal and knowledge distillation, recent methods have proven to be effective to mitigate catastrophic forgetting. However due to the limited size of the memory, large imbalance between the amount of data available for the old and new classes still remains which results in a deterioration of the overall accuracy of the model. To address this problem, we propose the use of the Balanced Softmax Cross-Entropy loss and show that it can be combined with exiting methods for incremental learning to improve their performances while also decreasing the computational cost of the training procedure in some cases. Experiments on the competitive ImageNet, subImageNet and CIFAR100 datasets show states-of-the-art results.

This work is partly supported by JST CREST (Grant Number JPMJCR1687), JSPS Grant-in-Aid for Scientific Research (Grant Number 21K12042, 17H01785), and the New Energy and Industrial Technology Development Organization (Grant Number JPNP20006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, H., Moon, T.: A simple class decision balancing for incremental learning. arXiv preprint arXiv:2003.13947 (2020)

  2. Belouadah, E., Popescu, A.: Il2m: class incremental learning with dual memory. In: IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  3. Belouadah, E., Popescu, A., Kanellos, I.: A comprehensive study of class incremental learning algorithms for visual tasks. Neural Netw. 135, 38–54 (2020)

    Article  Google Scholar 

  4. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience for general continual learning: a strong, simple baseline (2020)

    Google Scholar 

  5. Caccia, L., Belilovsky, E., Caccia, M., Pineau, J.: Online learned continual compression with adaptive quantization modules. In: International Conference on Machine Learning (2020)

    Google Scholar 

  6. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  7. Chaudhry, A., et al.: On tiny episodic memories in continual learning (2019)

    Google Scholar 

  8. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  9. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6

    Chapter  Google Scholar 

  10. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  11. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. Adv. Neural. Inf. Process. Syst. 17, 513–520 (2004)

    Google Scholar 

  12. Grefenstette, E., et al.: Generalized inner loop meta-learning. arXiv preprint arXiv:1910.01727 (2019)

  13. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  16. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  17. Hsu, Y.C., Liu, Y.C., Ramasamy, A., Kira, Z.: Re-evaluating continual learning scenarios: a categorization and case for strong baselines. arXiv preprint arXiv:1810.12488 (2018)

  18. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2017)

    Google Scholar 

  19. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  20. Lei, C.H., Chen, Y.H., Peng, W.H., Chiu, W.C.: Class-incremental learning with rectified feature-graph preservation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  21. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  22. Liu, Y., Su, Y., Liu, A.A., Schiele, B., Sun, Q.: Mnemonics training: multi-class incremental learning without forgetting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12245–12254 (2020)

    Google Scholar 

  23. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous object recognition. In: Conference on Robot Learning, pp. 17–26. PMLR (2017)

    Google Scholar 

  24. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)

    Article  Google Scholar 

  25. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  26. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

    Google Scholar 

  27. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  28. Ren, J., Yu, C., Sheng, S., Ma, X., Zhao, H., Yi, S., Li, H.: Balanced meta-softmax for long-tailed visual recognition. arXiv preprint arXiv:2007.10740 (2020)

  29. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge (2015)

    Google Scholar 

  30. Tao, X., Chang, X., Hong, X., Wei, X., Gong, Y.: Topology-preserving class-incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 254–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_16

    Chapter  Google Scholar 

  31. Welling, M.: Herding dynamical weights to learn. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1121–1128 (2009)

    Google Scholar 

  32. Wu, Y., et al.: Large scale incremental learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Jodelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jodelet, Q., Liu, X., Murata, T. (2021). Balanced Softmax Cross-Entropy for Incremental Learning. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12892. Springer, Cham. https://doi.org/10.1007/978-3-030-86340-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86340-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86339-5

  • Online ISBN: 978-3-030-86340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics