Skip to main content

On Defragmentation Algorithms for GPU-Native Octree-Based AMR Grids

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12942))

Included in the following conference series:

  • 889 Accesses

Abstract

The GPU-native CFD framework with dynamical adaptive mesh refinement (AMR) requires periodical execution of memory compaction operations to relieve memory expenses. The present paper addresses several different parallel GPU memory defragmentation algorithms for octree-based AMR grids. These algorithms are tested on benchmark CFD problems typical for AMR transformation. The results show that the memory defragmentation algorithm based on the prefix scan procedure is not only 1–2 order faster compared to algorithm based on space filling curve (z-curve) but also surprisingly and dramatically impacts on CFD solver performance by reducing total GPU runtime for some problems up to 37%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlukhin, P., Menshov, I.: On implementation high-scalable CFD solvers for hybrid clusters with massively-parallel architectures. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 436–444. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_42

    Chapter  Google Scholar 

  2. Burstedde, C., et al.: Extreme-scale AMR. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12. IEEE Computer Society (2010)

    Google Scholar 

  3. Pavlukhin, P., Menshov, I.: GPU-aware AMR on octree-based grids. In: Malyshkin, V. (ed.) PaCT 2019. LNCS, vol. 11657, pp. 214–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25636-4_17

    Chapter  Google Scholar 

  4. Menshov, I., Pavlukhin, P.: GPU-native gas dynamic solver on octree-based AMR grids. J. Phys.: Conf. Ser. 1640, 012017 (2020). https://publishingsupport.iopscience.iop.org/questions/how-to-cite-an-iop-conference-series-paper/

  5. Alhadeff, A., Leon, S.E., Celes, W., Paulino, G.H.: Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations. Eng. Comput. 32(3), 533–552 (2016). https://doi.org/10.1007/s00366-015-0431-0

    Article  Google Scholar 

  6. Giuliani, A., Krivodonova, L.: Adaptive mesh refinement on graphics processing units for applications in gas dynamics. J. Comput. Phys. 381, 67–90 (2019)

    Article  MathSciNet  Google Scholar 

  7. VanLeer, B.: Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov’s method. J. Comp. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  8. Godunov, S.K., Zabrodin, A.V., Ivanov, M.V., Kraiko, A.N., Prokopov, G.P.: Numerical solution of multidimensional problems of gas dynamics. Nauka, Moscow (1976)

    Google Scholar 

  9. Menshov, I.S., Pavlukhin, P.V.: Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted cartesian grids. Comput. Math. Math. Phys. 56(9), 1651–1664 (2016). https://doi.org/10.1134/S096554251609013X

    Article  MathSciNet  MATH  Google Scholar 

  10. Lohner, R.: An adaptive finite element scheme for transient problems in CFD. Comput. Methods Appl. Mech. Eng. 61, 323–338 (1987)

    Article  Google Scholar 

  11. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)

    Article  MathSciNet  Google Scholar 

  12. Nguyen, H.: GPU Gems 3, 1st edn. Addison-Wesley Professional, Boston (2007)

    Google Scholar 

  13. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  Google Scholar 

  14. Sedov, L.: Similarity and Dimensional Methods in Mechanics. Academic Press, NewYork (1959)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Moscow Center of Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation, No. 075-15-2019-1623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Pavlukhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlukhin, P., Menshov, I. (2021). On Defragmentation Algorithms for GPU-Native Octree-Based AMR Grids. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics