Skip to main content

STGATP: A Spatio-Temporal Graph Attention Network for Long-Term Traffic Prediction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Included in the following conference series:

Abstract

Traffic prediction is essential to public transportation management in cities. However, long-term traffic prediction involves complex spatio-temporal correlations changing dynamically, which is highly challenging to capture in road networks. We focus on these dynamic correlations and propose a spatio-temporal graph modeling method to solve the long-term traffic prediction problem. Our proposed method builds a Spatio-Temporal Graph Attention network for Traffic Prediction (STGATP), exploring and capturing the complex spatial-temporal nature in traffic networks. We apply dilated causal convolution with a gated fusion in the temporal modeling block, and diffusion convolution with the attention mechanism in the spatial modeling block. This results in that STGATP can simultaneously capture spatial dependencies and temporal dependencies in road networks. Finally, we conduct the experiments on public traffic datasets METR-LA and PEMS-BAY, and our method reaches superior performance. In particular, STGATP surpasses state-of-the-art methods by up to 11% improvement of RMSE measure on the PEMS-BAY datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Liu, B., Wan, S., Qiao, P., Pei, Q.: An edge traffic flow detection scheme based on deep learning in an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 22(3), 1840–1852 (2021)

    Article  Google Scholar 

  2. Chen, L., Zheng, L., Yang, J., Xia, D., Liu, W.: Short-term traffic flow prediction: from the perspective of traffic flow decomposition. Neurocomputing 413, 444–456 (2020)

    Article  Google Scholar 

  3. Han, L., Zheng, K., Zhao, L., Wang, X., Shen, X.: Short-term traffic prediction based on deep cluster in large-scale road networks. IEEE Trans. Veh. Technol. 68(12), 12301–12313 (2019)

    Article  Google Scholar 

  4. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International Conference on Learning Representations (2018)

    Google Scholar 

  5. Yang, B., Sun, S., Li, J., Lin, X., Tian, Y.: Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 332, 320–327 (2019)

    Article  Google Scholar 

  6. Zhang, W., Yu, Y., Qi, Y., Shu, F., Wang, Y.: Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A Transp. Sci. 15(2), 1688–1711 (2019)

    Article  Google Scholar 

  7. Boukerche, A., Wang, J.: Machine learning-based traffic prediction models for intelligent transportation systems. Comput. Netw. 181, 107530 (2020)

    Google Scholar 

  8. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  9. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  10. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2018)

    Google Scholar 

  11. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  12. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. In: The 28th International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization (2019)

    Google Scholar 

  13. Guo, K., et al.: Optimized graph convolution recurrent neural network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21, 3848–3858 (2020)

    Google Scholar 

  14. He, Z., Chow, C.Y., Zhang, J.D.: STCNN: a spatio-temporal convolutional neural network for long-term traffic prediction. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 226–233. IEEE (2019)

    Google Scholar 

  15. Ranjan, N., Bhandari, S., Zhao, H.P., Kim, H., Khan, P.: City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN. IEEE Access 8, 81606–81620 (2020)

    Article  Google Scholar 

  16. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1234–1241 (2020)

    Google Scholar 

  17. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13–15 September 2016. p. 125. ISCA (2016)

    Google Scholar 

  18. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  19. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)

    Google Scholar 

  20. Treur, J.: Dynamic modeling based on a temporal-causal network modeling approach. Biol. Insp. Cogn. Architect. 16, 131–168 (2016)

    Google Scholar 

  21. Pandey, A., Wang, D.: TCNN: temporal convolutional neural network for real-time speech enhancement in the time domain. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6875–6879. IEEE (2019)

    Google Scholar 

  22. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: International Conference on Machine Learning, pp. 933–941. PMLR (2017)

    Google Scholar 

  23. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  24. Shanthamallu, U.S., Thiagarajan, J.J., Spanias, A.: A regularized attention mechanism for graph attention networks. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3372–3376. IEEE (2020)

    Google Scholar 

  25. Makridakis, S., Hibon, M.: ARMA models and the box-Jenkins methodology. J. Forecast. 16(3), 147–163 (1997)

    Article  Google Scholar 

  26. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  27. Raeesi, M., Mesgari, M., Mahmoudi, P.: Traffic time series forecasting by feedforward neural network: a case study based on traffic data of Monroe. Int. Archiv. Photogram. Remote Sens. Spat. Inf. Sci. 40(2), 219 (2014)

    Article  Google Scholar 

  28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural. Inf. Process. Syst. 27, 3104–3112 (2014)

    Google Scholar 

  29. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3634–3640 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (71571186) and the Postgraduate Research Innovation Project of Hunan Province, China (CX20200058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, M., Zhu, X., Zhu, C. (2021). STGATP: A Spatio-Temporal Graph Attention Network for Long-Term Traffic Prediction. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics