Abstract
We address the open problem of unpaired image-to-image (I2I) translation using a generative model with fine-grained control over the latent space. The goal is to learn the conditional distribution of translated images given images from a source domain without access to the joint distribution. Previous works, such as MUNIT and DRIT, which simply keep content latent codes and exchange the style latent codes, generate images of inferior quality. In this paper, we propose a new framework for unpaired I2I translation. Our framework first assumes that the latent space can be decomposed into content and style sub-spaces. Instead of naively exchanging style codes when translating, our framework uses an interpolator that guides the transformation and is able to produce intermediate results under different strengths of translation. Domain specific information, which might still exist in content codes, is excluded in our framework. Extensive experiments show that the translated images using our framework are superior than or comparable to state-of-the-art baselines. Code is available upon publication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 331–340. Curran Associates Inc (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 4401–4410. IEEE (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, pp. 8110–8119. IEEE (2020)
Wang, Z., Chen, J., Hoi, S.C.H.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020)
Chen, Q.-F., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, pp. 1511–1520. IEEE (2017)
Isola, P., Zhu, J.-Y., Zhou, T.-H., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, pp. 5967–5976. IEEE (2017)
Zhu, J.-Y., Park, T., Isola, P., Efros A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2242–2251. IEEE (2017)
Chang, H.-Y., Wang, Z., Chuang, Y.-Y.: Domain-specific mappings for generative adversarial style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 573–589. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_34
Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT Press, Montreal (2014)
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Denton, E.L., Chintala, S., Szlam, A., Fergus, B.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 1486–149. MIT Press (2015)
Zhao, T, Mathieu, M., LeCun, Y.: Energy-based generative adversarial networks. In: 5th International Conference on Learning Representations (ICLR), Toulon, France (2017). OpenReview.net
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), Stockholm, Sweden, pp. 214–223. PMLR (2017)
Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. CoRR abs (1703.10717) (2017)
Kim, T., Cha, M., Kim, H., Lee, J.-K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, NSW, Australia, pp. 1857–1865. PMLR (2017)
Yi, Z.-L., Zhang, H., Tan, P., Gong, M.-L.: DualGAN: unsupervised dual learning for image-to-image translation. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2868–2876. IEEE (2017)
Choi, Y., Uh, Y.-J., Yoo, J., Ha, J.-W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, pp. 8185–8194. IEEE (2020)
Zhao, B., Chang, B., Jie, Z., Sigal, L.: Modular generative adversarial networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 157–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_10
Huang, X., Belongie, S.-J.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1510–1519. IEEE (2017)
He, K.-M., Zhang, X.-Y., Ren, S.-Q., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778. IEEE (2016)
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 4105–4113. IEEE (2017)
Xie, S.-N., Tu, Z.-W: Holistically-nested edge detection. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1395–1403. IEEE (2015)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, Long Beach, CA, pp. 6626–6637. Curran Associates Inc (2017)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, pp. 586–595. IEEE (2018)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Yang, J.-W., Kannan, A., Batra, D., Parikh, D.: LR-GAN: layered recursive generative adversarial networks for image generation. In: 5th International Conference on Learning Representations (ICLR), Toulon, France (2017). OpenReview.net
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, pp. 8798–8807. IEEE (2018)
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, pp. 1106–1114. MIT Press (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Luo, L., Hsu, W., Wang, S. (2021). Towards Fine-Grained Control over Latent Space for Unpaired Image-to-Image Translation. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-86365-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86364-7
Online ISBN: 978-3-030-86365-4
eBook Packages: Computer ScienceComputer Science (R0)