Skip to main content

Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Included in the following conference series:

Abstract

Optic disc and cup segmentation on ocular fundus images is an important prerequisite for diagnosing glaucoma. For the segmentation of optic disc (OD) and optic cup (OC), many previously proposed deep learning methods typically utilize monoscopic view images that lack spatial depth information, limiting their diagnostic ability and overall performance. According to ophthalmologists’ clinical insights, stereoscopic view of ocular fundus contains great potential to improve optic cup segmentation. We propose a depth mapping hybrid (DeMaH) deep learning method that effectively adopts depth mappings to segment OD and OC (ODC) on ocular fundus images. Experimental results demonstrate that our method achieves significant improvement on ODC segmentation, especially OC segmentation, validating the effectiveness of our method to incorporate clinical prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aquino, A., Gegúndez-Arias, M.E., Marín, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29, 1860–1869 (2010)

    Google Scholar 

  2. Berger, K., Voorhies, R., Matthies, L.H.: Depth from stereo polarization in specular scenes for urban robotics. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1966–1973. IEEE, Singapore (2017)

    Google Scholar 

  3. Chan, H.P., et al.: Assessment of breast lesions on stereoscopic and monoscopic digital specimen mammograms: an roc study. In: SPIE Medical Imaging, p. 428. SPIR, San Diego (2004)

    Google Scholar 

  4. hen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual correspondence embedding model for stereo matching costs. In: IEEE International Conference on Computer Vision, pp. 972–980. IEEE, Santiago (2015)

    Google Scholar 

  5. Cheng, J., et al.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32, 1019–1032 (2013)

    Article  Google Scholar 

  6. Ding, F., et al.: Hierarchical attention networks for medical image segmentation. CoRR abs/1911.08777

    Google Scholar 

  7. Ding, F., et al.: High-order attention networks for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 253–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_25

    Chapter  Google Scholar 

  8. Feng, S., Zhuo, Z., Pan, D., Tian, Q.: Ccnet: a cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing 392, 268–276 (2020)

    Article  Google Scholar 

  9. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37, 1597–1605 (2018)

    Article  Google Scholar 

  10. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  11. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE, Bristol (2011)

    Google Scholar 

  12. Goatman, K.A., Fleming, A.D., Philip, S., Williams, G.J., Olson, J.A., Sharp, P.F.: Detection of new vessels on the optic disc using retinal photographs. IEEE Trans. Med. Imaging 30(4), 972–979 (2011)

    Article  Google Scholar 

  13. Graber, G., Balzer, J., Soatto, S., Pock, T.: Efficient minimal-surface regularization of perspective depth maps in variational stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 511–520. IEEE, Boston (2015)

    Google Scholar 

  14. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  15. Jonas, J.B., Bergua, A., Schmitz-Valckenberg, P., Papastathopoulos, K.I., Budde, W.M.: Ranking of optic disc variables for detection of glaucomatous optic nerve damage. Invest. Ophthalmol. Vis. Sci. 41, 1764–1773 (2000)

    Google Scholar 

  16. Joshi, G.D., Sivaswamy, J., Krishnadas, S.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011)

    Article  Google Scholar 

  17. Khamis, S., Fanello, S., Rhemann, C., Kowdle, A., Valentin, J., Izadi, S.: StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 596–613. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_35

    Chapter  Google Scholar 

  18. Morgan, J.E.: Digital imaging of the optic nerve head: mono-scopic and stereoscopic analysis. Br. J. Ophthalmol. 89(7), 879–884 (2005)

    Article  Google Scholar 

  19. Noor, N., Khalid, N., Ariff, N.: Optic cup and disc color channel multi-thresholding segmentation, pp. 530–53. IEEE, Penang (2013)

    Google Scholar 

  20. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 1738–1749 (2015)

    Article  Google Scholar 

  21. Saxena, A., Schulte, J., Ng, A.Y., et al.: Depth estimation using monocular and stereo cues. In: Proceedings of the 20th international joint conference on Artificial intelligence (IJCAI 2007), pp. 2197–2220. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  22. Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognit Image Anal. 27, 618–624 (2017)

    Article  Google Scholar 

  23. Shankaranarayana, S.M., Ram, K., Mitra, K., Sivaprakasam, M.: Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 168–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_19

    Chapter  Google Scholar 

  24. Sharma, N., Verma, A.: Segmentation and detection of optic disc using k-means clustering. Int. J. Sci. Eng. Res. 6(8), 237–240 (2015)

    Google Scholar 

  25. Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating photometric stereo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1118–112. IEEE, San Francisco (2010)

    Google Scholar 

  26. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE, Hangzhou (2018)

    Google Scholar 

  27. Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)

    Google Scholar 

  28. Zhu, D., Smith, W.A.: Depth from a polarisation + RGB stereo pair. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7586–7595. IEEE, Long Beach (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Beijing Natural Science Foundation (No. 4192029), and the National Natural Science Foundation of China (61773385, 61672523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangwei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G. et al. (2021). Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics