Skip to main content

Labeling Chest X-Ray Reports Using Deep Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

One of the primary challenges in the development of Chest X-Ray (CXR) interpretation models has been the lack of large datasets with multilabel image annotations extracted from radiology reports. This paper proposes a CXR labeler that can simultaneously extracts fourteen observations from free-text radiology reports as positive or negative, abbreviated as CXRlabeler. It fine-tunes a pre-trained language model, AWD-LSTM, to the corpus of CXR radiology impressions and then uses it as the base of the multilabel classifier. Experimentation demonstrates that a language model fine-tuning increases the classifier F1 score by 12.53%. Overall, CXRlabeler achieves a 96.17% F1 score on the MIMIC-CXR dataset. To further test the generalization of the CXRlabeler model, it is tested on the PadChest dataset. This testing shows that the CXRlabeler approach is helpful in a different language environment, and the model (available at https://github.com/MaramMonshi/CXRlabeler) can assist researchers in labeling CXR datasets with fourteen observations.

This material is based upon work supported by Google Cloud Research credit program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, Y., Wang, X., Lu, L., Bagheri, M., Summers, R., Lu, Z.: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports. AMIA Summits Trans. Sci. Proc. 2018, 188 (2018)

    Google Scholar 

  2. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  3. McDermott, M.B.A., Hsu, T.M.H., Weng, W.-H.,M. Ghassemi, Szolovits, P.: CheXpert++: approximating the CheXpert labeler for speed, differentiability, and probabilistic output. In: Machine Learning for Healthcare Conference, pp. 913–927. PMLR (2020)

    Google Scholar 

  4. Demner-Fushman, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inf. Assoc. 23(2), 304–310 (2016)

    Article  Google Scholar 

  5. Bustos, A., Pertusa, A., Salinas, J.-M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  6. Johnson, A.E.W., et al.: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6, 1–8 (2019)

    Article  Google Scholar 

  7. Mańdziuk, J., Żychowski, A.: Dimensionality reduction in multilabel classification with neural networks. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  8. Monshi, M.M.A., Poon, J., Chung, V.: Deep learning in generating radiology reports: a survey. Artif. Intell. Med. 106, 101878 (2020)

    Article  Google Scholar 

  9. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017)

  10. Smit, A., Jain, S., Rajpurkar, P., Pareek, A., Ng, A.Y., Lungren, M.P.: CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. arXiv preprint arXiv:2004.09167 (2020)

  11. Aronson, A.R., Lang, F.-M.: An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 17(3), 229–236 (2010)

    Article  Google Scholar 

  12. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  13. Oakden-Rayner, L.: Exploring large-scale public medical image datasets. Acad. Radiol. 27(1), 106–112 (2020)

    Article  Google Scholar 

  14. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323 (2019)

  16. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: NAACL-HLT (2018)

    Google Scholar 

  17. Liventsev, V., Fedulova, I., Dylov, D.: Deep text prior: weakly supervised learning for assertion classification. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_26

    Chapter  Google Scholar 

  18. Bodenreider, O.: The unified medical language system (UMLS) integrating biomedical terminology. Nucleic Acids Res. 32(suppl\(\_\)1), D267–D270 (2004)

    Google Scholar 

  19. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843 (2016)

  20. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146 (2018)

  21. Ruder. S.: Neural transfer learning for natural language processing (2019)

    Google Scholar 

  22. Becker, C.: Chapter 7 transfer learning for NLP I | modern approaches in natural language processing (2020). https://compstat-lmu.github.io/seminar_nlp_ss20/transfer-learning-for-nlp-i.html#sequential-inductive-transfer-learning

  23. Ketkar, N.: Introduction to PyTorch. In: Deep Learning with Python, pp. 195–208. Apress, Berkeley (2017). https://doi.org/10.1007/978-1-4842-2766-4_12

    Chapter  Google Scholar 

  24. Howard, J., Gugger, S.: fastai: a layered API for deep learning. Information 11(2), 108 (2020)

    Article  Google Scholar 

  25. Harsha Kadam, S., Paniskaki, K.: Text analysis for email multi label classification. Open Digital Repository (2020)

    Google Scholar 

  26. Jain, S., Smit, A., Ng, A.Y., Rajpurkar, P.: Effect of radiology report labeler quality on deep learning models for chest X-ray interpretation. arXiv preprint arXiv:2104.00793 (2021)

  27. Jain, S., et al.: VisualCheXbert: addressing the discrepancy between radiology report labels and image labels. arXiv preprint arXiv:2102.11467 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maram Mahmoud A. Monshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monshi, M.M.A., Poon, J., Chung, V., Monshi, F.M. (2021). Labeling Chest X-Ray Reports Using Deep Learning. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics