Skip to main content

Predicting Landfall’s Location and Time of a Tropical Cyclone Using Reanalysis Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

Landfall of a tropical cyclone is the event when it moves over the land after crossing the coast of the ocean. It is important to know the characteristics of the landfall, well advance in time to take preventive measures timely. In this article, we develop a deep learning model based on the combination of a Convolutional Neural network and a Long Short-Term memory network to predict the landfall’s location and time of a tropical cyclone in six ocean basins of the world with high accuracy. We have used high-resolution spacial reanalysis data, ERA5, maintained by European Center for Medium-Range Weather Forecasting (ECMWF). The model takes any 9 h, 15 h, or 21 h of data, during the progress of a tropical cyclone and predicts its landfall’s location in terms of latitude and longitude and time in hours. For 21 h of data, we achieve mean absolute error for landfall’s location prediction in the range of 66.18–158.92 km and for landfall’s time prediction in the range of 4.71–8.20 h across all six ocean basins. The model can be trained in just 30 to 45 min (based on ocean basin) and can predict the landfall’s location and time in a few seconds, which makes it suitable for real time prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alemany, S., Beltran, J., Perez, A., Ganzfried, S.: Predicting hurricane trajectories using a recurrent neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, February 2018. https://doi.org/10.1609/aaai.v33i01.3301468

  2. Berrisford, P., et al.: The era-interim archive version 2.0 1, 23 (2011)

    Google Scholar 

  3. Boussioux, L., Zeng, C., Guénais, T., Bertsimas, D.: Hurricane forecasting: a novel multimodal machine learning framework (2020). https://arxiv.org/pdf/2011.06125.pdf

  4. Chaudhuri, S., Basu, D., Das, D., Goswami, S., Varshney, S.: Swarm intelligence and neural nets in forecasting the maximum sustained wind speed along the track of tropical cyclones over Bay of Bengal. Nat. Hazards, p. 87, July 2017. https://doi.org/10.1007/s11069-017-2824-4

  5. Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid CNN-LSTM model for typhoon formation forecasting 23(3), 375–396 (2019). https://doi.org/10.1007/s10707-019-00355-0

  6. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  7. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014). http://arxiv.org/abs/1412.3555

  8. Dvorak, V.F.: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103(5), 420–430 (1975)

    Article  Google Scholar 

  9. Dvorak, V.F.: Tropical cyclone intensity analysis using satellite data, vol. 11. US Department of Commerce, National Oceanic and Atmospheric Administration (1984)

    Google Scholar 

  10. European Centre for Medium-Range Weather Forecasts: Era5 reanalysis (2017). https://doi.org/10.5065/D6X34W69

  11. Gao, S., et al.: A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanologica Sinica 37, 8–12 (2018). https://doi.org/10.1007/s13131-018-1219-z

  12. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. Conference Publication No. 470, vol. 2, pp. 850–855 (1999)

    Google Scholar 

  13. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3(null), 115–143 (2003). https://doi.org/10.1162/153244303768966139

  14. Giffard-Roisin, S., Yang, M., Charpiat, G., Kumler Bonfanti, C., Kégl, B., Monteleoni, C.: Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data. Front. Big Data 3, 1 (2020). https://doi.org/10.3389/fdata.2020.00001

  15. Grinsted, A., Ditlevsen, P., Christensen, J.H.: Normalized us hurricane damage estimates using area of total destruction, 1900–2018. Proc. Nat. Acad. Sci. 116(48), 23942–23946 (2019). https://doi.org/10.1073/pnas.1912277116

    Article  MATH  Google Scholar 

  16. Hall, T.M., Jewson, S.: Statistical modeling of North Atlantic tropical cyclone tracks. Tellus 59A, 486–498 (2007). https://doi.org/10.1111/j.1600-0870.2007.00240.x

    Article  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

  18. IBTrACS (2020). https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access

  19. Kim, S., et al.: Deep-hurricane-tracker: tracking and forecasting extreme climate events, pp. 1761–1769, January 2019. https://doi.org/10.1109/WACV.2019.00192

  20. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  21. Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J.: The international best track archive for climate stewardship (IBTRACS): unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 91(3), 363–376 (2010). https://doi.org/10.1175/2009BAMS2755.1

  22. Kovordányi, R., Roy, C.: Cyclone track forecasting based on satellite images using artificial neural networks. ISPRS J. Photogram. Remote Sens. 64(6), 513–521 (2009)

    Article  Google Scholar 

  23. Krishnamurti, T.N., et al.: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate 13(23), 4196–4216 (2000)

    Article  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems, vol. 25, January 2012. https://doi.org/10.1145/3065386

  25. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  26. Leroux, M.D., et al.: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev. 7(2), 85–105 (2018). https://doi.org/10.6057/2018TCRR02.02

    Article  Google Scholar 

  27. Moradi Kordmahalleh, M., Gorji Sefidmazgi, M., Homaifar, A.: A sparse recurrent neural network for trajectory prediction of atlantic hurricanes. GECCO 2016, pp. 957–964. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2908812.2908834

  28. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel, pp. 807–814. Omnipress (2010). https://icml.cc/Conferences/2010/papers/432.pdf

  29. NOAA (2019). https://www.nhc.noaa.gov/modelsummary.shtml

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. RMSC (2020). http://www.rsmcnewdelhi.imd.gov.in/landfall-forecast.php

  32. Webersik, C., Esteban, M., Shibayama, T.: The economic impact of future increase in tropical cyclones in Japan. Nat. Hazards 55, 233–250 (2010). https://doi.org/10.1007/s11069-010-9522-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Biswas, K., Pandey, A.K. (2021). Predicting Landfall’s Location and Time of a Tropical Cyclone Using Reanalysis Data. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12894. Springer, Cham. https://doi.org/10.1007/978-3-030-86380-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86380-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86379-1

  • Online ISBN: 978-3-030-86380-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics