Skip to main content

Adaptive Correlation Filters Feature Fusion Learning for Visual Tracking

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12895))

Included in the following conference series:

  • 2264 Accesses

Abstract

Tracking algorithms based on discriminative correlation filters (DCFs) usually employ fixed weights to integrate feature response maps from multiple templates. However, they fail to exploit the complementarity of multi-feature. These features are against tracking challenges, e.g., deformation, illumination variation, and occlusion. In this work, we propose a novel adaptive feature fusion learning DCFs-based tracker (AFLCF). Specifically, AFLCF can learn the optimal fusion weights for handcrafted and deep feature responses online. The fused response map owns the complementary advantages of multiple features, obtaining a robust object representation. Furthermore, the adaptive temporal smoothing penalty adapts to the tracking scenarios with motion variation, avoiding model corruption and ensuring reliable model updates. Extensive experiments on five challenging visual tracking benchmarks demonstrate the superiority of AFLCF over other state-of-the-art methods. For example, AFLCF achieves a gain of 1.9\(\%\) and 4.4\(\%\) AUC score on LaSOT compared to ECO and STRCF, respectively.

This work was supported by the National Key Research and Development Program of China under Grants 2019YFB2101904, the National Natural Science Foundation of China under Grants 61732011 and 61876127, the Natural Science Foundation of Tianjin under Grant 17JCZDJC30800, and the Applied Basic Research Program of Qinghai under Grant 2019-ZJ-7017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960

  2. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015). https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  3. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490

  4. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129

  5. Dai, K., Wang, D., Lu, H., Sun, C., Li, J.: Visual tracking via adaptive spatially-regularized correlation filters. In: CVPR, pp. 4670–4679 (2019). https://doi.org/10.1109/CVPR.2019.00480

  6. Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.: Learning spatial-temporal regularized correlation filters for visual tracking. In: CVPR, pp. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515

  7. Huang, Z., Fu, C., Li, Y., Lin, F., Lu, P.: Learning aberrance repressed correlation filters for real-time UAV tracking. In: ICCV, pp. 2891–2900 (2019). https://doi.org/10.1109/ICCV.2019.00298

  8. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2016). https://doi.org/10.1109/TPAMI.2016.2609928

    Article  Google Scholar 

  9. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR, pp. 6931–6939 (2017). https://doi.org/10.1109/CVPR.2017.733

  10. Ma, C., Huang, J., Yang, X., Yang, M.: Hierarchical convolutional features for visual tracking. In: ICCV, pp. 3074–3082 (2015). https://doi.org/10.1109/ICCV.2015.352

  11. Ma, C., Huang, J., Yang, X., Yang, M.: Robust visual tracking via hierarchical convolutional features. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2709–2723 (2019). https://doi.org/10.1109/TPAMI.2018.2865311

    Article  Google Scholar 

  12. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). https://doi.org/10.1109/TPAMI.2014.2388226

    Article  Google Scholar 

  13. Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling H.: Vision Meets Drones: Past, Present and Future. arXiv preprint arXiv:1804.07437 (2020)

  14. Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: a benchmark for higher frame rate object tracking. In: ICCV, pp. 1134–1143 (2017). https://doi.org/10.1109/ICCV.2017.128

  15. Li, S., Yeung, D.: Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. In: AAAI, pp. 4140–4146 (2017)

    Google Scholar 

  16. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR, pp. 5374–5383 (2019). https://doi.org/10.1109/CVPR.2019.00552

  17. Fan, H., Ling, H.: Parallel tracking and verifying: a framework for real-time and high accuracy visual tracking. In: ICCV, pp. 5487–549 (2017). https://doi.org/10.1109/ICCV.2017.585

  18. Li, F., Wu, X., Zuo, W., Zhang, D., Zhang, L.: Remove cosine window from correlation filter-based visual trackers: when and how. IEEE Trans. Image Process. 29, 7045–7060 (2020). https://doi.org/10.1109/TIP.2020.2997521

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Fu, C., Ding, F., Huang, Z., Lu, G.: AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization. In: CVPR, pp. 11920–11929 (2020). https://doi.org/10.1109/CVPR42600.2020.01194

  20. Xu, T., Feng, Z., Wu, X., Kittler, J.: Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking. IEEE Trans. Image Process. 28, 7949–7959 (2019). https://doi.org/10.1109/TIP.2019.2919201

    Article  MathSciNet  MATH  Google Scholar 

  21. Lukežič, A., Vojíř, T., Čehovin Zajc, L., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126(7), 671–688 (2018). https://doi.org/10.1007/s11263-017-1061-3

    Article  MathSciNet  Google Scholar 

  22. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: CVPR, pp. 1387–1395 (2017). https://doi.org/10.1109/CVPR.2017.152

  23. Choi, J., et al.: Context-aware deep feature compression for high-speed visual tracking. In: CVPR, pp. 479–488 (2018). https://doi.org/10.1109/CVPR.2018.00057

  24. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: ICCV, pp. 1781–1789 (2017). https://doi.org/10.1109/ICCV.2017.196

  25. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  26. Wang, N., Zhou, W., Tian, Q., Hong, R., Wang, M., Li, H.: Multi-cue correlation filters for robust visual tracking. In: CVPR, pp. 4844–4853 (2018). https://doi.org/10.1109/CVPR.2018.00509

  27. Bhat, G., Johnander, J., Danelljan, M., Khan, F.S., Felsberg, M.: Unveiling the power of deep tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 493–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_30

    Chapter  Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  29. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Complementary learners for real-time tracking. In: CVPR, pp. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156

  30. Ma, C., Yang, X., Zhang, C., Yang, M.: Long-term correlation tracking. In: CVPR, pp. 5388–5396 (2015). https://doi.org/10.1109/CVPR.2015.7299177

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Zhu, P. (2021). Adaptive Correlation Filters Feature Fusion Learning for Visual Tracking. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86383-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86382-1

  • Online ISBN: 978-3-030-86383-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics