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Abstract. Cloud computing has garnered attention as a platform of query pro-

cessing systems. However, data privacy leakage is a critical problem. Chowdhury 

et al. proposed Cryptε, which executes differential privacy (DP) over encrypted 

data on two non-colluding semi-honest servers. Further, the DP index proposed 

by these authors summarizes a dataset to prevent information leakage while im-

proving the performance. However, two problems persist: 1) the original data are 

decrypted to apply sorting via a garbled circuit, and 2) the added noise becomes 

large because the sorted data are partitioned with equal width, regardless of the 

data distribution. To solve these problems, we propose a new method called DP-

summary that summarizes a dataset into differentially private data over a homo-

morphic encryption without decryption, thereby enhancing data security. Fur-

thermore, our scheme adopts Li et al.’s data-aware and workload-aware (DAWA) 

algorithm for the encrypted data, thereby minimizing the noise caused by DP and 

reducing the errors of query responses. An experimental evaluation using torus 

fully homomorphic encryption (TFHE), a bit-wise fully homomorphic encryption 

library, confirms the applicability of the proposed method, which summarized 

eight 16-bit data in 12.5 h. We also confirmed that there was no accuracy degra-

dation even after adopting TFHE along with the DAWA algorithm. 

Keywords: Differential Privacy, Differentially Private Summary, Fully Homo-

morphic Encryption, TFHE. 

1 Introduction 

In recent years, cloud computing has garnered significant attention as a system that 

facilitates query processing. However, data leakage is considered a serious problem, 

especially when processing sensitive data on cloud servers. Contextually, we assume 

three entities, namely data owners that provide original data to be analyzed, a cloud 

server that processes the original data, and data analysts that perform arbitrary analysis 

through the query responses of the cloud server. In this setting, the original data could 

be leaked to either or both the cloud server and data analysts. This paper aims to solve 

the aforenoted problems by adopting fully homomorphic encryption [1] and differential 

privacy [2]. 
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Fully homomorphic encryption (FHE) [1] evaluates arbitrary functions in addition 

and multiplication operations over encrypted data without decryption. By adopting 

FHE to handle the original data on the cloud server, we can preserve the privacy of this 

data. Note that homomorphic encryption (HE) is a limited version of FHE that enables 

additions or multiplication, or an arbitrary number of additions and a limited (or few) 

number of multiplications over encrypted data. 

Differential privacy (DP) [2] is a promising privacy-preserving technique that hin-

ders the estimation of input data by adding noise to output data. In query processing 

systems, we can adopt DP to preserve the privacy of individual data from query re-

sponses by adding noise. DP gives an information theoretic privacy guarantee. How-

ever, we must trust the cloud server because the cloud server handles the original data, 

whose privacy must be maintained, to respond queries; this means that both the original 

data and the query response data are revealed to the cloud server. 

Research on combining HE and DP to take advantage of both techniques to preserve 

both the privacy of the original data provided by data owners and the privacy of output 

data has gained increasing research focus since around 2015 [3]. In 2020, Chowdhury 

et al. [4] proposed a query processing system called Cryptε that protects original data 

against both two cloud servers and data analysts by combining HE and DP. The DP 

index that they proposed summarizes a dataset via DP to successfully bound the infor-

mation leakage. However, two problems persist: 1) the original data are decrypted to 

apply sorting via a garbled circuit, and 2) the added noise becomes large because the 

sorted data are partitioned with equal width, regardless of the data distribution. 

To tackle these problems, we combine FHE and DP to protect the privacy of original 

data against both two cloud servers and data analysts by summarizing the original data 

without decrypting the original data, which we call DP-summary. We construct the DP-

summaries in advance from the original data over FHE, followed by decrypting them 

to handle query processing. Then, the cloud server processes data analysts’ queries with 

the DP-summaries, which are plaintext, to speed up the query response time such that 

it is the same as that of Cryptε. Since all queries are processed on the DP-summaries 

whose privacy is guaranteed by DP, data analysts cannot make statistical guesses about 

the data owners’ original data even if they query many times. Moreover, we adopt a 

part of the data-aware and workload-aware (DAWA) algorithm proposed by Li et al. 

[5] over FHE to reduce the query response errors caused by DP, which is another char-

acteristic issue of Cryptε. 

Our contribution is stated below: 

─ We combine FHE and DP to protect the privacy of original data owned by data own-

ers against both a cloud server and data analysts. During the process, we never de-

crypt the original data until DP is adopted to enhance the security. Moreover, we 

adopt the DAWA algorithm [5] over FHE to reduce the errors of query responses 

while Cryptε exhibits substantial errors. 

This paper is organized as follows. Section 2 summarizes preliminary information 

regarding HE and DP. Related work is discussed in Section 3. The details of the pro-

posed method are presented in Section 4, followed by the experimental evaluation in 

Section 5. Finally, we provide conclusions and discuss future work in Section 6. 
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2 Preliminaries 

2.1 Homomorphic Encryption 

FHE [1], proposed by Gentry, enables an arbitrary number of multiplications and addi-

tions over encrypted data without decryption, whereas HE enables multiplications or 

additions over encrypted data, or an arbitrary number of additions and a limited (or few) 

number of multiplications over encrypted data. Generally, HE enables faster execution 

than FHE. Although we do not need to decrypt the encrypted data even during the cal-

culation by adopting HE, we cannot execute any branch operations because we cannot 

know the Boolean conditions. Thus, complicated functions such as square root and trig-

onometric functions are difficult to implement. By contrast, the adoption of bit-wise 

FHE such as torus fully homomorphic encryption (TFHE) [6] enables the implementa-

tion of arbitrary functions by constructing circuits. In this study, we adopt TFHE. 

2.2 Differential Privacy 

DP [2] protects the privacy of data by adding noise. A trade off exists between the 

strength of privacy preservation and the usefulness of differentially private data. Spe-

cifically, while adding more noise improves the privacy preservation strength, the dif-

ferentially private data has a larger deviation from the original value, and the usefulness 

of the differentially private data decreases. 

DP has a thorough mathematical basis. It is said that a randomized mechanism 𝑚 

satisfies 𝜖-DP if and only if it satisfies Definition 1, given below. Then, 𝜖 is called a 

privacy parameter and takes a real value larger than 0. The size of 𝜖 can be used to 

adjust the privacy strength. Specifically, the smaller the value of 𝜖, the stronger the 

guaranteed privacy. 

Definition 1 (ϵ-differential privacy [2]). A randomized mechanism m satisfies differen-

tial privacy if and only if the following holds: 

 
Pr(𝑚(𝐷) ∈ 𝑆)

Pr(𝑚(𝐷′) ∈ 𝑆)
≤ 𝑒𝑥𝑝(𝜖), (1) 

where D and D′ are any pair of databases with d(D, D′) = 11, S is any subset of the 

output of the randomized mechanism, and Pr() means the probability that the event in 

() occurs.  

Here, a randomized mechanism, e.g., Laplace mechanism [2], is a function that adds 

a random value to its input value to satisfy DP. The Laplace mechanism samples noise 

according to the Laplace distribution with a zero mean as follow: 𝑚𝐿𝐴𝑃(𝐷) = 𝑞(𝐷) +

𝑟, where 𝑞 is a query, 𝑟 is sampled from 𝐿𝑎𝑝 (
Δ𝑞

𝜖
), and Δ𝑞  is the sensitivity of query 𝑞. 

 
1 d(D, D′) = 1 means that the two databases 𝐷 and 𝐷′ are exactly the same except for one record, 

and the rest of the records are the same. 
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Since the noise added by DP is sampled according to a probability distribution hav-

ing a mean of zero, collecting numerous differentially private output data can recon-

struct its statistical properties, i.e., attackers who collect numerous differentially private 

output data can guess the original data probabilistically. Thus, the upper limit on the 

number of times that add the randomized noise is controlled by setting a privacy budget 

to prevent such attacks. 

3 Related Work 

3.1 Combination of homomorphic encryption and differential privacy 

In 2020, Chowdhury et al. [4] proposed a privacy-preserving query processing system 

called Cryptε by combining labeled homomorphic encryption (labHE) [7], an extension 

of linearly homomorphic encryption, and DP. It consists of two cloud servers, one com-

putation server and one decryption server, as shown in Fig. 1. The system protects the 

privacy of original data against both the two cloud servers and data analysts by applying 

DP under labHE. The original Cryptε has the disadvantage of a slow query response 

time because it performs homomorphic operations to apply DP after receiving a query. 

As a countermeasure to the above disadvantage, Cryptε was amended with a differen-

tially private index, called a DP index, to accelerate range query responses. Once the 

DP index is constructed, all the queries are executed with the DP index. However, 

building the DP index requires the decryption of original data to apply sorting via a 

garbled circuit, which means it is possible for the sorting result to be leaked to the 

computation server2. Besides, the added noise becomes large because the sorted data 

are partitioned with equal widths, regardless of the data distribution. 

 

Fig. 1. Cryptε system [4] 

 
2 Details of Cryptε’s possible privacy leakage are unknown because of no detailed implementa-

tion described in the paper [4]; thereby, some other information might be leaked. 
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3.2 Range Queries under Differential Privacy 

The range query algorithm under DP proposed by Li et al. [5] in 2014 achieves low 

errors for range queries corresponding to one-dimensional and two-dimensional data 

represented by histograms. Low errors obtained via DP improve the accuracy of query 

responses. The algorithm consists of two steps: 1) partitioning input data represented 

by histograms into clusters, each of which consists of close values, and 2) optimizing 

the response results for a set of range queries (i.e., workload) to reduce the error. The 

DAWA [5] algorithm includes these two steps. Here, we call step 1) the data-aware 

algorithm, and step 2) the workload-aware algorithm. In the data-aware algorithm, 

noise is added to the total sum value corresponding to each cluster; then, the average 

over the cluster is calculated. Hence, this step generates two types of errors, aggregation 

errors by averaging and perturbation errors by adding noise. To reduce the query re-

sponse errors, the data-aware algorithm seeks the best partitioning that minimizes both 

types of errors. Therefore, the data-aware partitioning reduces the total amount of noise 

rather than adding noise to the raw pieces of data. Recently, several workload-aware 

approaches that have outperformed the DAWA algorithm have been proposed [8]. 

However, our focus is constructing a differentially private summary without given 

workloads. Among data-aware approaches without given workloads, the DAWA algo-

rithm is the state-of-the-art in terms of average errors [9]. 

4 Proposed Method 

4.1 Overview 

In this section, we propose a range query processing system that responds to data ana-

lysts’ queries quickly, with no limit on the number of query responses, by constructing 

a differentially private summary (DP-summary) over FHE in advance. Specifically, our 

proposed method improves the query response time by responding to data analysts’ 

queries quickly using a pre-constructed DP-summary in plaintext. Moreover, it also 

overcomes the limitation on the number of query responses, caused by DP, by respond-

ing to all queries from the pre-constructed DP-summary instead of applying DP to the 

response for each query. These advantages are the same as those of Cryptε with a DP 

index. 

Besides, our proposed method solves two problems of Cryptε with DP index: 1) 

decryption of the original data before adopting DP and 2) the large amount of added 

noise caused by partitioning the sorted data with equi-width regardless of the data dis-

tribution in the DP index. Our proposed method solves the problem 1) by applying DP 

over FHE before decryption, which does not decrypt any original data until DP is 

adopted to enhance data security. To tackle the problem 2), we reduce the amount of 

added noise by adopting the data-aware algorithm, which optimizes the partitioning 

depending on the data distribution over FHE.  

Fig. 2 shows an overview of our proposed method. We assume four entities: data 

owners (DOs), a computation server (CS), a decryption server (DS), and data analysts 

(DAs). The DOs, CS, and DS are assumed to be semi-honest; that is, they follow the 
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protocol of our proposed system but attempt to steal the original data owned by the 

DOs. The DAs are assumed to be untrustworthy. It is also assumed that the CS and the 

DS collude neither with each other nor with other entities. Descriptions of each entity 

are presented below. In the following descriptions, 𝑵 and 𝑴 are arbitrary positive inte-

gers larger than or equal to 1. 

• Data Owner (𝑫𝑶_𝒋(∀𝒋, 𝟏 ≤ 𝒋 ≤ 𝑵)) 

The number of DOs is 𝑵. DOs encrypt their own data using symmetric keys received 

from the DS and then send the data to the CS. After sending the data, the DOs are 

not involved in the system. 

• Computation Server (𝑪𝑺) 

The CS aggregates the received encrypted data and applies DP to the encrypted data 

over TFHE. It also cooperates with the DS to construct the DP-summary for the 

received encrypted data. Any data stored on the CS are always protected by either 

or both TFHE and DP. 

• Decryption Server (𝑫𝑺) 

The DS has two roles: key generation for TFHE and decryption of the DP-enabled 

encrypted data received from the CS. Any data decrypted by the DS is always dif-

ferentially private; thus, the original data owned by the DOs is protected. 

• Data Analyst (𝑫𝑨_𝒊(∀𝒊, 𝟏 ≤ 𝒊 ≤ 𝑴)) 

The number of DAs is 𝑴. The DAs query the CS and obtain responses to the queries 

from the CS. DAs can attempt to make statistical guesses regarding the DOs’ original 

data by receiving many query responses. 

 

Fig. 2. Proposed System 

Our proposed system protects the privacy of original data owned by the DOs against 

the CS, DS, and DAs. Further, the CS and DS are allowed to store the data secured via 

DP. By guaranteeing DP for the partitioning result, the CS and DS are allowed to store 

the partitioning result in plaintext. The symmetric keys are held only by the DOs and 

DS. Encryption is performed only by the DOs, and decryption is performed only by the 

DS. 
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The procedure of our proposed method is presented below based on Fig. 2. Among 

the following steps, the preprocessing steps from "1. Key Generation" to "6. Decryp-

tion” are completed before the DAs’ queries are input. 

1. Key Generation: The DS generates a symmetric key via TFHE. The generated 

symmetric key is sent securely to the DOs. 

2. Encryption: The DOs encrypt their data using the symmetric key received 

from the DS and send the encrypted data to the CS. 

3. Aggregation: After receiving the encrypted data from the DOs, the CS aggre-

gates multiple encrypted data points whose domain is the same over homomor-

phic operations to construct a histogram for each pre-defined domain. 

4. Partitioning: The CS partitions the aggregated encrypted data using homomor-

phic operations without decryption.  

5. Applying Differential Privacy: The CS adds noise to each partitioned cluster 

using homomorphic operations and the Laplace mechanism without decryption 

followed by sending the differentially private encrypted data (DP-summary) to 

the DS. 

6. Decryption: The DS decrypts the encrypted DP-summary received from the 

CS. The decrypted DP-summary is sent to the CS. 

7. Query: The DAs query the CS and obtain the query response result. 

4.2 Adoption of Differential Privacy over Fully Homomorphic Encryption 

In this section, we explain how to adopt DP to a range query processing system based 

on FHE. Here, we only target range queries for histogram data; thus, we adopt the data-

aware algorithm, a part of the DAWA algorithm proposed by Li et al. [5]. We consider 

only one-dimensional data in our present implementation. The data-aware algorithm 

performs the partitioning such that the sum of the deviations for each cluster is mini-

mized. To perform the partitioning over ciphertexts, we need to calculate absolute val-

ues and minimum values over ciphertexts. Thus, we adopt TFHE [6] as an FHE scheme, 

specifically, as a bit-wise fully homomorphic encryption scheme. By adopting TFHE, 
arbitrary logic circuits consisting of binary gates can be constructed for the encrypted 

data to calculate absolute values and minimum values over ciphertexts. 
In the data-aware algorithm, the aggregated histogram data, which is the aggregation 

of input data sent from the DOs to the CS, is partitioned into a set of clusters, each of 

which has close values such that the deviation in the cluster is small; in other words, 

there are approximately uniform histogram data in each cluster. Then, the noise is added 

to the total sum value of each cluster. Rather than adding noise to each data point, add-

ing noise to each partitioned cluster reduces the total amount of noise added. Since 

partitioning the data to minimize the deviation within each cluster would result in a 

privacy violation, the data-aware algorithm consumes privacy budget 𝜖1 to perform dif-

ferentially private partitioning. Assuming that privacy budget 𝜖2 is entailed when add-

ing noise to the total sum value of the data in each partitioned cluster, the data-aware 

algorithm satisfies 𝜖-differential privacy, where 𝜖 = 𝜖1 + 𝜖2. 

Here, we call each histogram data a domain, while a cluster of domains classified by 

partitioning is called a bucket. A set of buckets is called a partition. We assume a set of 
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histogram data represented by 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛) , where 1 ≤ 𝑖 ≤ 𝑛 , 𝑛  is the 

number of domains, and 𝑥𝑖 represents the data of the 𝑖-th domain. A set of buckets is 

defined as 𝑩 = (𝑏1, 𝑏2, … , 𝑏𝑗 , … , 𝑏𝑘), where 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 and 𝑏𝑗  represents the 𝑗-th 

bucket. For example, if 𝑏𝑗 is a set of domains from the third to the sixth domains, it is 

expressed as 𝑏𝑗 = {3, 4, 5, 6}. 𝑩 is calculated from 𝒙 and 𝜖1 in the way that minimizes 

the total cost of buckets; specifically, the cost of each bucket is the deviation of the data 

in the bucket, same as algorithm 1 of DAWA [6]. Noise generated by the Laplace mech-

anism by consuming 𝜖1 is added to each bucket’s deviation to calculate its cost; then, 

the final 𝑩 is chosen to minimize the total cost, making 𝑩 differentially private. Fur-

ther, we define a set of the total sum values of each bucket as 𝑺 = (𝑠1, 𝑠2, … , 𝑠𝑗 , … , 𝑠𝑘), 

where 𝑠𝑗 is the sum value over the bucket 𝑏𝑗  and 1 ≤ 𝑗 ≤ 𝑘. To make 𝑺 differentially 

private, the CS adds noise generated from the Laplace mechanism by consuming 𝜖2 to 

𝑺. The differentially private total sum values of a given partition are defined as 𝑺′ =
(𝑠1

′ , 𝑠2
′ , … , 𝑠𝑗

′, … , 𝑠𝑘
′ ), where 1 ≤ 𝑗 ≤ 𝑘 and 𝑠𝑗

′ represents the differentially private total 

sum value of the histogram data in the 𝑗-th bucket.  

To deploy a DP-summary, the CS sends 𝑺′ to the DS to decrypt 𝑺′ using the sym-

metric key of TFHE, and then the DS sends it back to the CS as plaintext. The CS 

applies uniform expansion to the decrypted 𝑺′, i.e., dividing 𝑠𝑗
′ by the number of ele-

ments in 𝑏𝑗. For example, if 𝑠𝑗
′ = 10 and 𝑏𝑗 = {3, 4, 5, 6}, the uniform histogram value 

becomes 2.5 so that (𝑥3
′ , 𝑥4

′ , 𝑥5
′ , 𝑥6

′ ) = (2.5, 2.5, 2.5, 2.5). Finally, the CS obtains the 

uniformly expanded data 𝒙′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑖
′, … , 𝑥𝑛

′ ). We use 𝒙′ as the DP-summary to 

respond to DAs’ queries. Note that 𝒙 and 𝑺 are represented in ciphertext and 𝑩 and 𝒙′ 
are represented in plaintext. 𝑺′ is represented in ciphertext until it is decrypted by the 

DS. 

Fig. 3 shows an example with 𝒙 = (𝐸(3), 𝐸(2), 𝐸(6), 𝐸(5), 𝐸(6), 𝐸(3), 𝐸(4)) and 

𝑩 = {{1, 2}, {3, 4, 5}, {6, 7}} as a calculated partition, where E is the encryption algo-

rithm, i.e., TFHE. In this example, 𝑺 = (𝐸(5), 𝐸(17), 𝐸(7)). The differentially private 

total sum value per bucket is assumed to be 𝑺′ = (𝐸(4.6), 𝐸(16.2), 𝐸(7.8)); then, the 

values of the uniformly expanded data are 𝒙′ = (2.3,2.3,5.4, 5.4,5.4,3.9,3.9). 

 

Fig. 3. Construction of Differentially Private Histogram over Fully Homomorphic Encryption 
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4.3 Security Analysis 

The security assumption of our proposed method is presented below. 

• The DOs, CS, and DS are assumed to be semi-honest; that is, they follow the proto-

col of our proposed system but attempt to steal the original data owned by the DOs.  

• The DAs are assumed to be untrusted. 

• The CS and the DS collude neither with each other nor with other entities. 

• The symmetric keys are held only by the DOs and DS. (Encryption is performed 

only by the DOs, and decryption is performed only by the DS.) 

Our proposed system protects the privacy of original data owned by the DOs against 

the CS, DS, and DAs. The original data are encrypted at the DO to be sent to the CS, 

so that the CS cannot see the original data. Then, the CS executes partitioning over the 

encrypted original data followed by applying differential privacy without decryption, 

which guarantees the CS cannot see any information related to the original data. After 

the DS receives the differentially private encrypted partitioned data consisting of B and 

S', the DS can decrypt them, which also guarantees that the DS only know differentially 

private data. Thus, any information related to the original data does not reveal to any 

parties under the condition where CS and DS never collude each other. 

5 Experimental Evaluation 

In the experimental evaluation, we examined the execution time to construct the DP-

summary and its accuracy. 

5.1 Experimental Setup 

The programs used in the evaluation were written in C++ with TFHE [6] version 1.1 

and run with single-threaded execution in the environment presented in Table 1. We 

adopted fixed-point number representation and two's complement arithmetic. In the im-

plementation using fixed-point arithmetic, the value of the fractional part that cannot 

be expressed was truncated. Although approximate arithmetic (CKKS) [10] enables 

arbitrary polynomial functions over encrypted complex-number vectors for handling 

real numbers, we cannot execute branch operations such as greater-than without de-

cryption, resulting in no partitioning. Thus, we adopt TFHE. 

The privacy parameter, 𝜖, used in the evaluation experiment was 1.00. The ratio of 

𝜖1 and 𝜖2 was 1:3, same as that used by Li et al. [5], i.e., 𝜖1 = 0.25 and 𝜖2 = 0.75. The 

histogram data 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛 used in the experiment was generated randomly between 

0 and 10. The upper limit of the data was determined to ensure that no overflow occurs 

during the computation process.  Since negative numbers are not assumed as the nu-

merical data, if the differentially private numerical data becomes negative, the numeri-

cal data is replaced with 0. 
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Table 1. Experimental Environment 

Name Value 

CPU model Intel(R) Xeon(R) Platinum 8280 

Socket 2 

Core 56 

Memory size 1.5TB 

OS CentOS Linux release 7.6.1810(Core) 

Linux version 3.10.0-957.21.3 

g++ version 7.3.1 

5.2 DP-summary Construction Time 

To validate our proposed method's applicability, we examined the DP-summary con-

struction time, which is the execution time taken to construct a differentially private 

database from the encrypted database with TFHE. The construction time depends on 

the domain size and the number of bits representing ciphertexts in TFHE. Thus, we 

changed the domain size and the bit size representing the ciphertexts to measure the 

construction time. 

The construction time was measured from the beginning of partitioning to the end 

of the uniform expansion 10 times to determine the average by using the chrono func-

tion, which is included in C++ standard library. We changed the domain size from 2 to 

8 and the bit sizes as 10(2) bits, 12(4) bits, and 16(8) bits, representing the total bit size 

(the bit size in the fractional part). For example, 10(2) shows 10 bits in total, in which 

2 bits are used for the fractional part, 7 bits are used for the integer part, and the re-

maining 1 bit is used for the code part. 

Fig. 4 shows the construction time based on different domain sizes; this confirms 

that the DP-summary construction time increases exponentially with the domain size 

because the number of domain combinations to merge increases exponentially to iden-

tify the best one. However, the proposed method is still feasible when the domain size 

is less than or equal to 8 because the DP-summary construction requires only one exe-

cution. 

Fig. 5 shows the construction time based on different bit sizes; this confirms that the 

DP-summary construction time increases linearly with the bit size representing cipher-

texts. Thus, we confirm that our proposed method is feasible with a small domain size 

regardless of the bit size representing ciphertexts. 

The DP-summary construction time is slow for two reasons. One is because of ho-

momorphic operations. The computation cost over ciphertexts using homomorphic op-

erations is large compared to that over plaintexts. In particular, TFHE is the bit-wise 

FHE, and the computation cost using TFHE is likely to be large compared to that using 

the integer-based FHE. The other is because any optimizations are impossible to be 

adapted. Original data-aware algorithm in DAWA [5] adopts some optimizations to 

speed up the partitioning. On the other hand, in our proposed method, any handled data 

is ciphertexts, which results in unavailability of any optimizations because we cannot 

see the values, i.e., plain texts, when encrypted. When partitioning, we need to seek the 
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optimal partition from all possible partitions, whose computational complexity order is 

𝑶(𝟐𝒏) (𝒏 is domain size). Including these two reasons, it was reported that the compu-

tation using TFHE is approximately 109 times slower than that over plaintexts [11]. 

During the measurement of the construction time, we also measured the maximum 

consumed memory size with the DP-command “bin/time --format=%M.” The maxi-

mum consumed memory size varied from 513MB to 530MB depending on the domain 

size and the bit size. 

 

 

Fig. 4. DP-summary Construction Time v.s. Domain Size 

 

Fig. 5.  DP-summary Construction Time v.s. Bit Size

5.3 Accuracy of DP-summary 

In this experiment, we evaluated the accuracy of the DP-summary. In the implementa-

tion, we adopted a fixed-point number representation to truncate the fractional value 

according to the bit size representing the fractional part, which may affect the accuracy 

of the DP-summary. When the fractional part's bit size is small, the truncated fractional 

value becomes large, i.e., the accuracy of the DP-summary is expected to change 
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depending on the fractional part's bit size. Thus, we measured the changes in the accu-

racy of the constructed DP-summary with different bit sizes of the fractional part. 

We implemented the plaintext program that performs the same processing as our 

proposed method and the baseline using a floating-point number representation. This 

number representation is expressed in 64 bits: 1 bit for the code part, 52 bits for the 

mantissa part, and 11 bits for the exponent part. 

We measured the error between the constructed DP-summary and the aggregated 

data on which differential privacy was not applied. We examined the error 100 times 

to determine the average for three different bit sizes—10(2) bits, 12(4) bits, and 16(8) 

bits—in a histogram with domain sizes from 2 to 10.  

Fig. 6 shows the results of accuracy. We cannot verify the difference in accuracy 

according to the bit size. The reason is that, in our proposed method, the size of the 

truncated fractional part is negligibly small compared to the size of noise added by 

differential privacy; this implies that the effect on accuracy caused by changing the bit 

size of the fractional part is not significant. 

 

 

Fig. 6. Comparison of Accuracy v.s. Domain Size 
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algorithm [5], which optimizes the partitioning depending on the data distribution. 

Although our proposed method responds quickly to the queries, it requires high com-
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for eight 16-bits data; this is still feasible because the DP-summary requires only one 

construction. We also confirm that accuracy is not degraded even after adopting TFHE 

to the data-aware algorithm. 

Our future work includes increasing the speed to prepare DP-summary for a larger 

dataset. 
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