Skip to main content

Open Data Science to Fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Abstract

In this paper, we describe the deep learning-based COVID-19 cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention (NPI) prescriptor developed by the winning team of the 500k XPRIZE Pandemic Response Challenge, a four-month global competition organized by the XPRIZE Foundation. The competition aimed at developing data-driven AI models to predict COVID-19 infection rates and to prescribe NPI Plans that governments, business leaders and organizations could implement to minimize harm when reopening their economies. In addition to the validation performed by XPRIZE with real data, the winning models were validated in a real-world scenario thanks to an ongoing collaboration with the Valencian Government in Spain. We believe that this experience contributes to the necessary transition to more evidence-driven policy-making, particularly during a pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.dw.com/en/coronavirus-global-gdp-to-sink-by-22-trillion-over-covid-says-imf/a-56349323.

  2. 2.

    https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker.

  3. 3.

    Tonga, Malta, Turkmenistan and Virgin Islands- were not considered due to lack of reliable data.

  4. 4.

    https://github.com/malozano/valencia-ia4covid-xprize/raw/master/docs/supplementary.pdf.

  5. 5.

    https://tinyurl.com/cjstz4yc.

  6. 6.

    We selected amongst the most affected countries and regions across the globe.

  7. 7.

    See https://en.wikipedia.org/wiki/Knapsack_problem..

  8. 8.

    https://public.tableau.com/app/profile/kristina.p8284/viz/PrescriptionsWeb/Visualize.

  9. 9.

    https://github.com/malozano/valencia-ia4covid-xprize.

References

  1. 500k XPRIZE Pandemic Response Challenge, sponsored by Cognizant. https://www.xprize.org/challenge/pandemicresponse

  2. Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1), 83–105 (1994)

    Article  Google Scholar 

  3. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos Solit. Fractals 139, 110017 (2020)

    Google Scholar 

  4. Ayyoubzadeh, S., Ayyoubzadeh, S., Zahedi, H., Ahmadi, M., Kalhori, S.: Predicting COVID-19 incidence through analysis of Google trends data in Iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 6(2), e18828 (2020)

    Google Scholar 

  5. Belakaria, S., Deshwal, A., Doppa, J.: Max-value entropy search for multi-objective bayesian optimization. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, vol. 32 (2019)

    Google Scholar 

  6. Brauner, J.M., et al.: Inferring the effectiveness of government interventions against COVID-19. Science 371(6531) (2021)

    Google Scholar 

  7. Chatterjee, A., Gerdes, M., Martinez, S.: Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors 20(11), 3089 (2020)

    Article  Google Scholar 

  8. Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solit. Fractals 135, 109864 (2020)

    Article  Google Scholar 

  9. Ferguson, N., et al.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005)

    Article  Google Scholar 

  10. Flaxman, S., et al.: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020)

    Article  Google Scholar 

  11. Hale, T., et al.: A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10 (2021)

    Google Scholar 

  12. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Khan, M., Hossain, A.: Machine learning approaches reveal that the number of tests do not matter to the prediction of global confirmed COVID-19 cases. Front. Artif. Intell. Appl. 3, 90 (2020)

    Google Scholar 

  15. Lauer, S., Grantz, K., Bi, Q., Jones, F., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582 (2020)

    Article  Google Scholar 

  16. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm (extended abstract). In: Bessiere, C. (ed.) Proceedings of the 29th International Joint Conference on Artificial Intelligence (AI), IJCAI-20, pp. 4750–4754 (2020)

    Google Scholar 

  17. Miikkulainen, R., et al.: From prediction to prescription: evolutionary optimization of nonpharmaceutical interventions in the COVID-19 pandemic. IEEE Trans. Evol. Comput. 25(2), 386–401 (2021)

    Article  Google Scholar 

  18. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pereira, I., et al.: Forecasting COVID-19 dynamics in Brazil: a data driven approach. Int. J. Environ. Res. Public Health 17(14), 5115 (2020)

    Article  Google Scholar 

  20. Rahman, M., et al.: Data-driven dynamic clustering framework for mitigating the adverse economic impact of COVID-19 lockdown practices. Sustain. Cities Soc. 62, 102372 (2020)

    Article  Google Scholar 

  21. Riccardi, A., Gemignani, J., Fernández-Navarro, F., Heffernan, A.: Optimisation of non-pharmaceutical measures in COVID-19 growth via neural networks. IEEE Trans. Emerg. Topics Comput. 5(1), 79–91 (2021)

    Article  Google Scholar 

  22. Sameni, R.: Model-based prediction and optimal control of pandemics by nonpharmaceutical interventions. arXiv preprint arXiv:2102.06609 (2021)

  23. Tayarani, N., Mohammad, H.: Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos Solit. Fractals 110338 (2020)

    Google Scholar 

  24. Yousefpour, A., Jahanshahi, H., Bekiros, S.: Optimal policies for control of the novel coronavirus disease outbreak. Chaos Solit. Fractals 136, 1109883 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zeroual, A., Harrou, F., Dairi, A., Sun, Y.: Deep learning methods for forecasting COVID-19 time-series data: a comparative study. Chaos Solit. Fractals 140, 110121 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by grants FONDOS SUPERA COVID-19 Santander-CRUE (CD4COVID19 2020–2021), Fundación BBVA for SARS-CoV-2 research (IA4COVID19 2020-2022) and the Valencian Government. We thank the University of Alicante’s Institute for Computer Research for their support with computing resources, co-financed by the European Union and ERDF funds through IDIFEDER/2020/003. MAGM acknowledges funding from MEFP Beatriz Galindo program (BEAGAL18/00203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lozano, M.A. et al. (2021). Open Data Science to Fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12978. Springer, Cham. https://doi.org/10.1007/978-3-030-86514-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86514-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86513-9

  • Online ISBN: 978-3-030-86514-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics